分析 通过函数的奇偶性以及函数的周期性,化简所求表达式,通过分段函数求解即可.
解答 解:∵函数f(x)(x∈R)是周期为4的奇函数,
且在[0,2]上的解析式为f(x)=$\left\{\begin{array}{l}{x(1-x)\\ \\ 0≤x≤1}\\{sinπx\\ \\ 1<x≤2}\end{array}\right.$,
则f($\frac{29}{4}$)+f($\frac{41}{6}$)
=f(8-$\frac{3}{4}$)+f(8-$\frac{7}{6}$)
=f(-$\frac{3}{4}$)+f(-$\frac{7}{6}$)
=-f($\frac{3}{4}$)-f($\frac{7}{6}$)
=-$\frac{3}{4}$(1-$\frac{3}{4}$)-sin$\frac{7}{6}$π=-$\frac{3}{16}$+$\frac{1}{2}$=$\frac{5}{16}$.
故答案为:$\frac{5}{16}$
点评 本题考查函数的值的求法,分段函数的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2n-1}$ | B. | 2n-1 | C. | $\frac{1}{3n-2}$ | D. | 3n-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com