精英家教网 > 高中数学 > 题目详情
18.已知正实数a、b满足a2+b+3=ab,则a+b的最小值为3+4$\sqrt{2}$.

分析 将a2+b+3=ab化为(2a-2)(b-a-1)=8,再利用基本不等式,求解不等式即可求得a+b的取值范围,从而得到a+b的最小值.

解答 解:由a2+b+3=ab得a2-2a+1-b(a-1)+2(a-1)=-4,
即(a-1)2-b(a-1)+2(a-1)=-4,
∴(a-1)(a-1-b+2)=-4
∴(2a-2)(b-a-1)=8,
∴8=(2a-2)(b-a-1)≤$(\frac{2a-2+b-a+1}{2})^{2}$=$(\frac{a+b-3}{2})^{2}$
解得a+b≥3+4$\sqrt{2}$,取等号的条件是2a-2=b-a-1且(2a-2)(b-a-1)=8,解得a=$\sqrt{2}$-1,b=3$\sqrt{2}$,
∴a+b的最小值为3+4$\sqrt{2}$.
故答案为:3+4$\sqrt{2}$.

点评 本题考查了基本不等式在最值问题中的应用.在应用基本不等式求最值时要注意“一正、二定、三相等”的判断.运用基本不等式解题的关键是寻找和为定值或者是积为定值,难点在于如何合理正确的构造出定值.属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.5本不同的数,全部分给四个学生,每个学生至少1本,不同分法的种数为240.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值,若对于任意的x∈[0,3],都有f(x)<c2成立,则实数c的取值范围为(  )
A.(-1,9)B.(-9,1)C.(-∞,-1)∪(9,+∞)D.(-∞,-9)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直线l过抛物线C:y2=4x的焦点且与x轴垂直,则l与C所围成的图形的面积等于$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在平面直角坐标系xoy中,圆x2+y2=r2(r>0)内切于正方形ABCD,任取圆上一点P,若$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),则$\frac{1}{4}$是m2,n2的等差中项,现有一椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)内切于矩形ABCD,任取椭圆上一点P,若$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),则m2,n2的等差中项为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列不等式(组)的解为{x|x<0}的是(  )
A.$\frac{x}{2}$-3<$\frac{x}{3}$-3B.$\left\{\begin{array}{l}{x-2<0}\\{2-3x>1}\end{array}\right.$C.x2-2x>0D.|x-1|<2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为$\left\{\begin{array}{l}{x(1-x)\\ \\ 0≤x≤1}\\{sinπx\\ \\ 1<x≤2}\end{array}\right.$,则f($\frac{29}{4}$)+f($\frac{41}{6}$)=$\frac{5}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)的定义域为[-1,4],部分对应值如表,
x-10234
f(x)12020
f(x)的导函数y=f′(x)的图象如图所示.当1<a<2时,函数y=f(x)-a的零点的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=lnx,$\begin{array}{l}{\;}{g(x)=({2-a})({x-1})-2f(x)}\end{array}$.
(Ⅰ)当a=1时,求函数g(x)的单调区间;
(Ⅱ)若对任意$x∈({0,\frac{1}{2}}),g(x)>0$恒成立,求实数a的最小值.

查看答案和解析>>

同步练习册答案