精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值,若对于任意的x∈[0,3],都有f(x)<c2成立,则实数c的取值范围为(  )
A.(-1,9)B.(-9,1)C.(-∞,-1)∪(9,+∞)D.(-∞,-9)∪(1,+∞)

分析 根据条件得f′(1)=0,f′(2)=0.求解即可求出a,b的值,若对任意的x∈[0,3],都有f(x)<c2成立?f(x)max<c2在区间[0,3]上成立,根据导数求出函数在[0,3]上的最大值,进一步求c的取值范围.

解答 解:函数的f(x)的导数f′(x)=6x2+6ax+3b,
∵函数f(x)在x=1及x=2取得极值,则有f′(1)=0,f′(2)=0.
即$\left\{\begin{array}{l}{6+6a+3b=0}\\{24+12a+3b=0}\end{array}\right.$,
解得a=-3,b=4.
即f(x)=2x3-9x2+12x+8c,f′(x)=6x2-18x+12=6(x-1)(x-2).
由f′(x)>0得0<x<1或2<x<3;
由f′(x)<0得1<x<2.
故当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.
则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.
∵对于任意的x∈[0,3],有f(x)<c2恒成立,
∴9+8c<c2
解得c<-1或c>9,
因此c的取值范围为(-∞,-1)∪(9,+∞).
故选:C

点评 本题考查导数的运用:求单调区间和极值、最值,同时考查不等式恒成立问题转化为求函数的最值问题,属于中档题和易错题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.以下四个命题中,其中真命题的个数为(  )
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②对于命题p:?x∈R使得x2+x+1<0.则¬p:?x∈R均有x2+x+1≥0;
③两个随机变量的线性相关性越强,则相关系数就越接近于1
④命题p:“x>3“是“x>5“的充分不必要条件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.知a1=1,an+1=$\frac{a_n}{{3{a_n}+1}}$,则数列{an}的通项为an=(  )
A.$\frac{1}{2n-1}$B.2n-1C.$\frac{1}{3n-2}$D.3n-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在棱长为2的正方体ABCD-A1B1C1D1内(含正方体表面)任取一点M,则$\overrightarrow{A{A}_{1}}$•$\overrightarrow{AM}$≥1的概率是(  )
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=lnx+ax有大于1的极值点,则a的取值范围是(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中a1=1,an+1-Sn=n+1,n∈N*,{an}的前n项和为Sn
(Ⅰ)证明:数列{an+1}是等比数列;
(Ⅱ)对一切n∈N*,若p(an+1)>3n-1恒成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将1~9这9个数平均分成3组,则每组的3个数都成等差数列的分组方法的种数是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知正实数a、b满足a2+b+3=ab,则a+b的最小值为3+4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为正方形,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案