精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=1+2cosxcos(x+3φ)是偶函数,其中φ∈(0,$\frac{π}{2}$),则下列关于函数g(x)=cos(2x-φ)的正确描述是(  )
A.g(x)在区间[-$\frac{π}{12},\frac{π}{3}$]上的最小值为-1.
B.g(x)的图象可由函数f(x)向上平移2个单位,在向右平移$\frac{π}{3}$个单位得到.
C.g(x)的图象可由函数f(x)的图象先向左平移$\frac{π}{3}$个单位得到.
D.g(x)的图象可由函数f(x)的图象先向右平移$\frac{π}{3}$个单位得到.

分析 利用函数y=Asin(ωx+φ)的图象变换规律,诱导公式,得出结论.

解答 解:∵函数f(x)=1+2cosxcos(x+3φ)是偶函数,其中φ∈(0,$\frac{π}{2}$),
∴3φ=π,φ=$\frac{π}{3}$,∴f(x)=1+2cosxcos(x+π)=1-2cos2x=-cos2x=cos(π-2x)=cos(2x-π),
∴函数g(x)=cos(2x-φ)=cos(2x-$\frac{π}{3}$),
故函数f(x)的图象先向左平移$\frac{π}{3}$个单位得到y=cos[2(x+$\frac{π}{3}$)-π]=cos(2x-$\frac{π}{3}$)=g(x)的图象,
故选:C.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,诱导公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知y=f(x)的定义域为R的偶函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{\frac{5}{4}sin\frac{π}{4}x,0≤x≤2}\\{(\frac{1}{2})^{x}+1,x>2}\end{array}\right.$,若关于x的方程[f(x)]2+af(x)+b=0(a,b∈R)有且仅有6个不同的实数根,在实数a的取值范围是(-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若复数z的共轭复数$\overline z$满足$({1+i})•\overline z=3+i$,则复数z在复平面内对应的点位于第一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知右焦点为F(c,0)的椭圆M:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{3}$=1(a>0)关于直线x=c对称的图形过坐标原点.
(1)求椭圆M的方程;
(2)过点(4,0)且不垂直于y轴的直线与椭圆M交于P,Q两点,点Q关于x轴的对称原点为E,证明:直线PE与x轴的交点为F.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z=$\frac{4-2ai}{1-i}$(a∈R)的实部为1,则z的虚部为(  )
A.1B.3C.-1D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知右焦点为F(c,0)的椭圆M:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点$(1,\frac{3}{2})$,且椭圆M关于直线x=c对称的图形过坐标原点.
(1)求椭圆M的方程;
(2)过点(4,0)且不垂直于y轴的直线与椭圆M交于P,Q两点,点Q关于x轴的对称原点为E,证明:直线PE与x轴的交点为F.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a+2b=2,且a>1,b>0,则$\frac{2}{a-1}+\frac{1}{b}$的最小值为(  )
A.4B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线kx-y+1=3k中,无论k如何变动,直线都恒过定点(  )
A.(0,0)B.(0,1)C.(3,1)D.(2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,正三棱柱ABC-A1B1C1中,D,E,M分别是线段BC,CC1,AB的中点,AA1=2AB=4.
(1)求证:DE∥平面A1MC;
(2)在线段AA1上是否存在一点P,使得二面角A1-BC-P的余弦值为$\frac{{7\sqrt{19}}}{38}$?若存在,求出AP的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案