| A. | g(x)在区间[-$\frac{π}{12},\frac{π}{3}$]上的最小值为-1. | |
| B. | g(x)的图象可由函数f(x)向上平移2个单位,在向右平移$\frac{π}{3}$个单位得到. | |
| C. | g(x)的图象可由函数f(x)的图象先向左平移$\frac{π}{3}$个单位得到. | |
| D. | g(x)的图象可由函数f(x)的图象先向右平移$\frac{π}{3}$个单位得到. |
分析 利用函数y=Asin(ωx+φ)的图象变换规律,诱导公式,得出结论.
解答 解:∵函数f(x)=1+2cosxcos(x+3φ)是偶函数,其中φ∈(0,$\frac{π}{2}$),
∴3φ=π,φ=$\frac{π}{3}$,∴f(x)=1+2cosxcos(x+π)=1-2cos2x=-cos2x=cos(π-2x)=cos(2x-π),
∴函数g(x)=cos(2x-φ)=cos(2x-$\frac{π}{3}$),
故函数f(x)的图象先向左平移$\frac{π}{3}$个单位得到y=cos[2(x+$\frac{π}{3}$)-π]=cos(2x-$\frac{π}{3}$)=g(x)的图象,
故选:C.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,诱导公式,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com