精英家教网 > 高中数学 > 题目详情

【题目】如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E.

(1)求证:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切线PC的长.

【答案】
(1)解:∵AD∥BC

∴AB=DC,∠EDC=∠BCD,

又PC与⊙O相切,∴∠ECD=∠DBC,

∴△CDE∽△BCD,∴

∴CD2=DEBC,即AB2=DEBC


(2)解:由(1)知,

∵△PDE∽△PBC,

又∵PB﹣PD=9,


【解析】对于(1)求证:AB2=DEBC,根据题目可以判断出梯形为等腰梯形,故AB=CD,然后根据角的相等证△CDE相似于△BCD,根据相似的性质即可得到答案.
对于(2)由BD=9,AB=6,BC=9,求切线PC的长.根据弦切公式可得PC2=PDPB,然后根据相似三角形边成比例的性质求出PD和PB代入即可求得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数,以原点为极点轴的正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程

(2)若点的极坐标为是曲线上的一动点,求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角所对的边分别为,且,则下列结论正确的是( )

A.B.是钝角三角形

C.的最大内角是最小内角的D.,则外接圆半径为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.
(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;
(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条谜语的概率均为 ,乙队猜对前两条的概率均为 ,猜对第3条的概率为 .若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王每天自己开车上班,他在路上所用的时间(分钟)与道路的拥堵情况有关.小王在一年中随机记录了200次上班在路上所用的时间,其频数统计如下表,用频率近似代替概率.

(分钟)

15

20

25

30

频数(次)

50

50

60

40

(Ⅰ)求小王上班在路上所用时间的数学期望

(Ⅱ)若小王一周上班5天,每天的道路拥堵情况彼此独立,设一周内上班在路上所用时间不超过的天数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形所在平面,为线段的中点, 为线段上一点,且

(1)求证: 平面

(2)若,求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调递增区间;

2)对于为任意实数,关于的方程恰好有两个不等实根,求实数的值;

3)在(2)的条件下,若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

(1)若,求函数的极值;

(2)若函数上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的左焦点为F,离心率为 .若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(  )
A.
=1
B.
=1
C.
=1
D.
=1

查看答案和解析>>

同步练习册答案