精英家教网 > 高中数学 > 题目详情
是两条不同的直线,是三个不同的平面,则下列命题正确的是(      )
A.若,则B.若所成的角相等,则
C.若,则D.若,则
C

试题分析:对于A:垂直同一平面的两个平面也可能平行,不正确;对于B:与同平面所成角相等的两条直线可能平行也可能相交,还可能异面,不正确;对于D:两条平行直线中一条直线平行一个平面,另一条直线可能与平面平行,也可以直线在平面内,不正确;对于C:由知,在平面内一定存在一条直线平行,则,则,故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在斜三棱柱中,侧面⊥底面,侧棱与底面成60°的角,.底面是边长为2的正三角形,其重心为点,是线段上一点,且.
 
(1)求证://侧面;
(2)求平面与底面所成锐二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知多面体ABCDFE中, 四边形ABCD为矩形,AB∥EF,AF⊥BF,平面ABEF⊥平面ABCD, O、M分别为AB、FC的中点,且AB = 2,AD =" EF" = 1.

(1)求证:AF⊥平面FBC;
(2)求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD∶VF-CBE的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图, 已知四边形ABCD和BCEG均为直角梯形,ADBC,CEBG,且,平面ABCD⊥平面BCEGBC=CD=CE=2AD=2BG=2.

(1)求证: ECCD
(2)求证:AG∥平面BDE
(3)求:几何体EG-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为矩形,底面分别是中点.

(1)求证:平面
(2)求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面四个结论:

①直线BE与直线CF异面;
②直线BE与直线AF异面;
③直线EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正确的有__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是两条不同的直线, 是两个不同的平面,下列命题中正确的是(    )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三条不重合的直线m,n,l 和两个不重合的平面α,β ,下列命题正确的是:(  )
A.若m//n,nα,则m//α
B.若α⊥β, αβ="m," n⊥m ,则n⊥α.
C.若l⊥n ,m⊥n,则l//m
D.若l⊥α,m⊥β, 且l⊥m ,则α⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知异面直线ab分别在平面αβ内,且αβc,那么直线c一定(  )
A.与ab都相交
B.只能与ab中的一条相交
C.至少与ab中的一条相交
D.与ab都平行

查看答案和解析>>

同步练习册答案