精英家教网 > 高中数学 > 题目详情
对任意的实数x,有(2x-3)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,则a1+2a2+3a3+4a4+5a5+6a6等于(  )
A、-12B、-6C、6D、12
考点:二项式系数的性质
专题:排列组合
分析:依题意,对(2x-3)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6的等号两端分别求导,再对x赋值1计算即可.
解答: 解:∵(2x-3)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6
等号两端分别求导得:
12(2x-3)5=a1+2a2x+3a3x2+4a4x3+5a5x4+6a6x5
令x=1得,
12(2-3)5=a1+2a2+3a3+4a4+5a5+6a6
即a1+2a2+3a3+4a4+5a5+6a6=-12
故选A
点评:本题考查二项式定理的应用,着重考查导数法与赋值法的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

AB
=(4,0),
AC
=(2,2),则
AC
BC
的夹角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(α+
π
3
)=
3
5
,则cos(
π
6
-α)的值为(  )
A、
1
6
B、
3
4
C、
3
5
D、-
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a6+a7=3,则S12=(  )
A、18B、21C、36D、39

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个函数中,既是(0,
π
2
)上的增函数,又是以π为周期的偶函数的是(  )
A、y=tanx
B、y=|sinx|
C、y=cosx
D、y=|cosx|

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程3logx24=aloga3的解集是(  )
A、∅B、{-2}
C、{2}D、{-2,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,有a2+b2-c2=ab,则角C为(  )
A、60°B、120°
C、30°D、45°或135°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}中,a1=1,an+1-an=2(n∈N*),则an为(  )
A、n2-1
B、n2
C、2n
D、2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

在某次试验中,有两个试验数据x,y统计的结果如下面的表格1.
x 1 2 3 4 5
y 2 3 4 4 5
参考数据:
序号 x y x2 xy
1 1 2 1 2
2 2 3 4 6
3 3 4 9 12
4 4 4 16 16
5 5 5 25 25
表格2
(1)在给出的坐标系中画出x,y的散点图.
(2)补全表格2,然后根据表格2的内容和公式
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

①求出y对x的回归直线方程
y
=
b
x+
a
中回归系数
a
b

②估计当x为10时
y
的值是多少?

查看答案和解析>>

同步练习册答案