精英家教网 > 高中数学 > 题目详情
如图,在直四棱柱ABCD-A1B1C1D1中,点E,F分别在AA1,CC1上,且AE=
3
4
AA1,CF=
1
3
CC1,点A,C到BD的距离之比为3:2,则三棱锥E-BCD和F-ABD的体积比
VE-BCD
VF-ABD
=
3
2
3
2
分析:根据A、C到BD的距离之比算出S△BCD:S△ABD.由直四棱柱ABCD-A1B1C1D1 中,AE=
3
4
AA1且CF=
1
3
CC1,算出AE:CF的比值,再由锥体的体积公式加以计算即可得到
VE-BCD
VF-ABD
的值
解答:解:∵点A、C到BD的距离之比为3:2,
∴△BCD和△ABD的面积之比为3:2,可得S△BCD=
2
3
S△ABD
∵AE=
3
4
AA1,CF=
1
3
CC1,∴
AE
CF
=
3
4
1
3
=
9
4

∵三棱锥E-BCD的体积V1=
1
3
S△BCD•AE,
三棱锥F-ABD的体积V2=
1
3
S△ABD•CF.
VE-BCD
VF-ABD
=
V1
V2
=
1
3
S△BCD•AE
1
3
S△ACD•CF
=
S△BCD•AE
S△ACD•CF
AE
CF
=
2
3
9
4
=
3
2

故答案为:
3
2
点评:本题给出直棱棱柱上满足条件的点,求两个三棱锥的体积之比.着重考查了直棱柱的性质、三角形的面积比和锥体的体积公式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点,F为AB的中点.证明:
(1)EE1∥平面FCC1
(2)平面D1AC⊥平面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

18、如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点.
(1)设F是棱AB的中点,证明:直线EE1∥平面FCC1
(2)证明:平面D1AC⊥平面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

15、如图,在直四棱柱ABCD-A1B1C1D1中,A1C1⊥B1D1,E,F分别是AB,BC的中点.
(1)求证:EF∥平面A1BC1
(2)求证:平面D1DBB1⊥平面A1BC1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1,F分别是棱AD,AA1,AB的中点.
(1)证明:直线EE1∥平面FCC1
(2)求二面角B-FC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)如图,在直四棱柱ABCD-A1B1C1D1中,AB=BC,∠ABC=60°,BB1=BC=2,M为BC中点,点N在CC1上.
(1)试确定点N的位置,使AB1⊥MN;
(2)当AB1⊥MN时,求二面角M-AB1-N的正切值.

查看答案和解析>>

同步练习册答案