精英家教网 > 高中数学 > 题目详情
16.若函数f(x)=x3+ax2+3x-6在x=-3时取得极值,则a=(  )
A.2B.3C.4D.5

分析 先对函数进行求导,根据函数f(x)在x=-3时取得极值,可以得到f′(-3)=0,代入求a值.

解答 解:对函数求导可得,f′(x)=3x2+2ax+3
∵f(x)在x=-3时取得极值,
∴f′(-3)=0⇒a=5
故选:D.

点评 本题主要考查函数在某点取得极值的性质.属基础题.比较容易,要求考生只要熟练掌握基本概念,即可解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设a=${∫}_{0}^{1}$$\sqrt{x}$dx,b=${∫}_{0}^{1}$xdx,c=${∫}_{0}^{1}$x3dx,则a,b,c的大小关系为(  )
A.b>c>aB.b>a>cC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z满足z+i=$\frac{1+i}{i}$(i为虚数单位),则$\overline{z}$=(  )
A.-1+2iB.-1-2iC.1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$=(3,2)与向量$\overrightarrow{b}$=(x,3)互相垂直,则x=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,AD⊥平面ABC,CE∥AD,且AB=AC=CE=2AD.
(1)试在线段BE上确定一点M,使得DM∥平面ABC;
(2)若AB⊥AC,求平面BDE与平面ABC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某射手射击所得环数X的分布列如表,已知X的数学期望E(X)=8.9,则y的值为(  )
 X 7 8 910 
 P x 0.1 0.3 y
A.0.8B.0.4C.0.6D.0.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线x-$\sqrt{2}$y-$\sqrt{2}$=0经过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点和顶点,则椭圆C的离心率为(  )
A.$\sqrt{2}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.用反证法证明结论“实数a,b,c至少有两个大于1.”需要假设“实数a,b,c至多有一个大于1”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,}&{x≥0}\\{2{x}^{2}-5,}&{x<0}\end{array}\right.$编写一个程序,对每输入的一个x值,都得到相应的函数值,画出程序框图并编写相应的程序计算.

查看答案和解析>>

同步练习册答案