精英家教网 > 高中数学 > 题目详情
已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。
(I)求曲线的方程;
(II)试证明:在轴上存在定点,使得总能被轴平分
(1)    (2)见解析
第一问中设为曲线上的任意一点,则点在圆上,
,曲线的方程为
第二问中,设点的坐标为,直线的方程为,  ………………3分   
代入曲线的方程,可得 
,∴
确定结论直线与曲线总有两个公共点.
然后设点,的坐标分别, ,则,  
要使轴平分,只要得到。
(1)设为曲线上的任意一点,则点在圆上,
,曲线的方程为.  ………………2分       
(2)设点的坐标为,直线的方程为,  ………………3分   
代入曲线的方程,可得 ,……5分            
,∴
∴直线与曲线总有两个公共点.(也可根据点M在椭圆的内部得到此结论)
………………6分
设点,的坐标分别, ,则,   
要使轴平分,只要,            ………………9分
,        ………………10分
也就是
,即只要  ………………12分  
时,(*)对任意的s都成立,从而总能被轴平分.
所以在x轴上存在定点,使得总能被轴平分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,椭圆的左、右焦点分别为.已知都在椭圆上,其中为椭圆的离心率.
(1)求椭圆的方程;
(2)设是椭圆上位于轴上方的两点,且直线与直线平行,交于点P.
(i)若,求直线的斜率;
(ii)求证:是定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1、F2是双曲线C:x2=1的两个焦点,P是C上一点,且△F1PF2是等腰直角三角形,则双曲线C的离心率为
A.1+B.2+
C.3-D.3+

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点A(-1,0),B(1,0),直线AM,BM相交于点M,且它们的斜率之积是2,求点M的轨迹方程,并指出该轨迹曲线的离心率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若双曲线的左、右顶点分别为,点是第一象限内双曲线上的点.若直线的倾斜角分别为,且,那么的值是       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)设是单位圆上的任意一点,是过点轴垂直的直线,是直线 轴的交点,点在直线上,且满足. 当点在圆上运动时,记点M的轨迹为曲线
(Ⅰ)求曲线的方程,判断曲线为何种圆锥曲线,并求其焦点坐标;
(Ⅱ)过原点且斜率为的直线交曲线两点,其中在第一象限,它在轴上的射影为点,直线交曲线于另一点. 是否存在,使得对任意的,都有?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知为极点,求使是正三角形的点的极坐标为_______          __

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设双曲线的两个焦点分别为,离心率为2.
(1)求双曲线的渐近线方程;
(2)过点能否作出直线,使与双曲线交于两点,且,若存在,求出直线方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线上点处的切线斜率为4,则点的一个坐标是
A.(0,-2)B.(1, 1)C.(-1, -4) D.(1, 4)

查看答案和解析>>

同步练习册答案