精英家教网 > 高中数学 > 题目详情
19.已知cos2α+cos2β+cos2γ=1,则sinαsinβsinγ的最大值为(  )
A.$\frac{2\sqrt{3}}{9}$B.$\frac{2\sqrt{2}}{9}$C.$\frac{2\sqrt{6}}{9}$D.$\frac{2\sqrt{3}}{3}$

分析 运用同角的平方关系可得sin2α+sin2β+sin2γ=2,再由三元基本不等式的变形:abc≤($\frac{a+b+c}{3}$)3,可得sin2αsin2βsin2γ的最大值,进而得到所求最大值.

解答 解:由cos2α+cos2β+cos2γ=1,及同角的平方关系可得:
sin2α+sin2β+sin2γ=2,
可得sin2αsin2βsin2γ≤($\frac{si{n}^{2}α+si{n}^{2}β+si{n}^{2}γ}{3}$)3=($\frac{2}{3}$)3=$\frac{8}{27}$,
即有|sinαsinβsinγ|≤$\frac{2\sqrt{6}}{9}$,当且仅当sin2α=sin2β=sin2γ=$\frac{2}{3}$,取得最大值.
即有sinαsinβsinγ的最大值为$\frac{2\sqrt{6}}{9}$.
故选:C.

点评 本题考查基本不等式的运用:求最值,注意运用同角的平方关系和三元基本不等式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.直线y=kx+3被圆(x-2)2+(y-3)2=4截得的弦长为2$\sqrt{2}$,则k=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在同一平面直角坐标系中,由曲线y=tanx变成曲线y′=3tan2x′的伸缩变换$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=3y}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数y=cos2x+2sinx+1的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某班50名学生的数学成绩的频率分布直方图如图:
(Ⅰ)求图中的x值;
(Ⅱ)从不低于80分的学生中随机抽取3人,成绩不低于90分的人数记为ξ,求ξ的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为(  )
A.$\frac{1}{2}$B.2C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=PD=2,O为AC与BD的交点,E为棱PB上一点.
(1)证明:平面EAC⊥平面PBD;
(2)若E是PB中点,求点B平面EDC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.一个不透明的口袋中装有6个大小和形状都相同的小球,其中2个白球,4个黑球.
(1)从中取1个小球,求取到白球的概率;
(2)从中取2个小球,记取到白球的个数为X,求X的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(文科学生做)设命题p:函数f(x)=x3+ax2+ax是R上的单调递增函数,命题q:|a-1|≤m(m>0).
(1)当a=1时,判断命题p的真假,并说明理由;
(2)若q是p的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案