| A. | $\frac{2\sqrt{3}}{9}$ | B. | $\frac{2\sqrt{2}}{9}$ | C. | $\frac{2\sqrt{6}}{9}$ | D. | $\frac{2\sqrt{3}}{3}$ |
分析 运用同角的平方关系可得sin2α+sin2β+sin2γ=2,再由三元基本不等式的变形:abc≤($\frac{a+b+c}{3}$)3,可得sin2αsin2βsin2γ的最大值,进而得到所求最大值.
解答 解:由cos2α+cos2β+cos2γ=1,及同角的平方关系可得:
sin2α+sin2β+sin2γ=2,
可得sin2αsin2βsin2γ≤($\frac{si{n}^{2}α+si{n}^{2}β+si{n}^{2}γ}{3}$)3=($\frac{2}{3}$)3=$\frac{8}{27}$,
即有|sinαsinβsinγ|≤$\frac{2\sqrt{6}}{9}$,当且仅当sin2α=sin2β=sin2γ=$\frac{2}{3}$,取得最大值.
即有sinαsinβsinγ的最大值为$\frac{2\sqrt{6}}{9}$.
故选:C.
点评 本题考查基本不等式的运用:求最值,注意运用同角的平方关系和三元基本不等式,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 2 | C. | $\sqrt{3}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com