分析 由题意求出圆心坐标和半径,由点到直线的距离公式求出圆心到直线y=kx+3的距离d,根据弦长公式列出方程求出k的值.
解答 解:由题意得,圆心坐标是(2,3),半径r=2,
∴圆心到直线y=kx+3的距离d=$\frac{|2k-3+3|}{\sqrt{{k}^{2}+1}}$=$\frac{|2k|}{\sqrt{{k}^{2}+1}}$,
∵截得的弦长为2$\sqrt{2}$,且${r}^{2}={d}^{2}+(\frac{l}{2})^{2}$,
∴${2}^{2}=(\frac{|2k|}{\sqrt{{k}^{2}+1}})^{2}+(\sqrt{2})^{2}$,解得k=±1,
故答案为:±1.
点评 本题考查直线与圆相交时弦长问题,以及点到直线的距离公式,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{3}}{9}$ | B. | $\frac{2\sqrt{2}}{9}$ | C. | $\frac{2\sqrt{6}}{9}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com