精英家教网 > 高中数学 > 题目详情
4.在△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,则使△ABD是以∠BAD为钝角的三角形的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 本题是一个等可能事件的概率,试验发生包含的事件对应的是长度为6的一条线段,满足条件的事件是组成钝角三角形,根据等可能事件的概率得到结果根据几何概型的概率公式进行计算即可.

解答 解;由题意知本题是一个等可能事件的概率,试验发生包含的事件对应的是长度为6的一条线段,
∵∠BAD为钝角,这种情况的边界是∠BAD=90°的时候,此时BD=4
∴这种情况下,必有4<BD<6.
∴概率P=$\frac{6-4}{6}$=$\frac{1}{3}$,
故选:B.

点评 本题主要考查几何概型的概率公式,求出对应的长度是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,点P($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$)在椭圆上.
(1)求椭圆C的方程;
(2)若过椭圆C的左焦点F的直线l与椭圆交于A,B两点,求△AOB面积的最大值(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的部分频率分布直方图.在统计方法中,同一组数据常用该组区间的中点值作为代表,观察图形的信息,据此估计本次考试的平均分为71.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若直线l:x+y+a=0被圆x2+y2=a截得的弦长为$\sqrt{2}$,则a的值为(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.空间中,可以确定一个平面的条件是(  )
A.三个点B.四个点C.三角形D.四边形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.直线y=kx+3被圆(x-2)2+(y-3)2=4截得的弦长为2$\sqrt{2}$,则k=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设离散型随机变量X的所有可能值为1,2,3,4,且P(x=k)=ak,(k=1,2,3,4)
(1)求常数a的值;
(2)求X的分布列;
(3)求P(2≤x<4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知四棱锥E-ABCD的底面是平行四边形,BC=2,BD=$\sqrt{6}$,ED=4,EB=EC=$\sqrt{10}$,平面BCE⊥平面ABCD.
(Ⅰ)证明:BD⊥平面EBC;
(Ⅱ)求三棱锥B-ADE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某班50名学生的数学成绩的频率分布直方图如图:
(Ⅰ)求图中的x值;
(Ⅱ)从不低于80分的学生中随机抽取3人,成绩不低于90分的人数记为ξ,求ξ的期望.

查看答案和解析>>

同步练习册答案