分析 (1)由离心率公式求得a与b关系,将P点坐标代入椭圆方程,即可求得a和b的值,取出椭圆的方程;
(2)由题意可知,设出直线l的方程,及A和B点坐标,代入椭圆方程,求得关于y的一元二次方程,由韦达定理求得y1+y2和y1•y2的关系,根据三角形面积公式即可求得△AOB的面积,化简由基本不等式即可求得△AOB面积的最大值.
解答 解:(1)∵e=$\frac{c}{a}$=$\sqrt{1-(\frac{b}{a})^{2}}$=$\frac{\sqrt{2}}{2}$,
∴a2=2b2,①
又点P($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$)在椭圆上,
∴$\frac{3}{2{a}^{2}}+\frac{1}{4{b}^{2}}=1$②,
由①②得:a=$\sqrt{2}$,b=1,
故椭圆方程为:$\frac{{x}^{2}}{2}+{y}^{2}=1$,
(2)由(1)可知:F(-1,0),A(x1,y1),B(x2,y2),设直线l的方程为,x=ky-1,
由$\left\{\begin{array}{l}{x=ky-1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,消去x,整理得:(k2+2)y2-2ky-1=0,
由韦达定理可知:y1+y2=$\frac{2k}{{k}^{2}+2}$,y1•y2=-$\frac{1}{{k}^{2}+1}$,
∴S△AOB=S△AOF+S△BOF=$\frac{1}{2}$•|OF|•|y1-y2|=$\frac{1}{2}$•|y1-y2|=$\frac{1}{2}$$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$,
=$\frac{1}{2}$$\frac{\sqrt{8{k}^{2}+8}}{{k}^{2}+2}$,
=$\sqrt{2}$•$\frac{\sqrt{{k}^{2}+1}}{{k}^{2}+2}$,
=$\sqrt{2}$•$\sqrt{\frac{{k}^{2}+1}{[({k}^{2}+1)+1]^{2}}}$,
=$\sqrt{2}$•$\sqrt{\frac{{k}^{2}+1}{({k}^{2}+1)^{2}+2({k}^{2}+1)+1}}$,
=$\sqrt{2}$•$\sqrt{\frac{1}{{k}^{2}+1+\frac{1}{{k}^{2}+1}+2}}$≤$\sqrt{2}$•$\sqrt{\frac{1}{2+2}}$=$\frac{\sqrt{2}}{2}$(当且仅当k2+1=$\frac{1}{{k}^{2}+1}$,即k=0时,等号成立),
∴△AOB的最大值为$\frac{\sqrt{2}}{2}$.
点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、三角形的面积公式及基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com