精英家教网 > 高中数学 > 题目详情
8.一个不透明的口袋中装有6个大小和形状都相同的小球,其中2个白球,4个黑球.
(1)从中取1个小球,求取到白球的概率;
(2)从中取2个小球,记取到白球的个数为X,求X的概率分布和数学期望.

分析 (1)先求出基本事件总数和其中取到白球包含的基本事件个数,由此能求出取到白球的概率.
(2)由题意X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和EX.

解答 解:(1)一个不透明的口袋中装有6个大小和形状都相同的小球,其中2个白球,4个黑球.
从中取1个小球,基本事件总数n=6,
其中取到白球包含的基本事件个数m=2,
∴取到白球的概率p=$\frac{m}{n}$=$\frac{2}{6}=\frac{1}{3}$.
(2)由题意X的可能取值为0,1,2,
P(X=0)=$\frac{{C}_{4}^{2}}{{C}_{6}^{2}}$=$\frac{6}{15}$,
P(X=1)=$\frac{{C}_{2}^{1}{C}_{4}^{1}}{{C}_{6}^{2}}$=$\frac{8}{15}$,
P(X=2)=$\frac{{C}_{2}^{2}}{{C}_{6}^{2}}$=$\frac{1}{15}$,
∴X的分布列为:

 X 0 1 2
 P $\frac{6}{15}$ $\frac{8}{15}$ $\frac{1}{15}$
EX=$0×\frac{6}{15}+1×\frac{8}{15}+2×\frac{1}{15}$=$\frac{2}{3}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知Rt△ABC中,两直角边分别为a、b,斜边和斜边上的高分别为c、h,则$\frac{c+2h}{a+b}$的取值范围是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知cos2α+cos2β+cos2γ=1,则sinαsinβsinγ的最大值为(  )
A.$\frac{2\sqrt{3}}{9}$B.$\frac{2\sqrt{2}}{9}$C.$\frac{2\sqrt{6}}{9}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.区间[0,2]上随机取一个数x,sin$\frac{πx}{2}$的值介于$\frac{1}{2}$到1之间的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{π}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)是定义在R上的奇函数,且对任意的x∈R都有f(x+3)-f(-x)=0,当x∈(0,1]时f(x)=x2-4x,则f(2015)+f(2016)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若3位同学分别从4门课程中选修1门,且选修的课程均不相同,则不同的选法共有24种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={1,2},B={1,2,…,4n}(n∈N*),设C={(x,y)|x整除y或y整除x,x∈A,y∈B},令f(n)表示集合C所含元素的个数.
(1)求f(1),f(2),f(3)的值;
(2)由(1)猜想f(n)的表达式,并用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某商场想通过检查发票存根及销售记录的2%来快速估计每月的销售总额,采取如下方法:从某本发票的存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票存根上的销售额组成一个调查样本.这种抽取样本的方法是(  )
A.抽签法B.随机数法C.系统抽样法D.其他方式的抽样

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆C的圆心与双曲线M:y2-x2=$\frac{1}{2}$的上焦点重合,直线3x+4y+1=0与圆C相交于A,B两点,且|AB|=4.
(1)求圆C的标准方程;
(2)O为坐标原点,D(-2,0),E(2,0)为x轴上的两点,若圆C内的动点P使得|PD|,|PO|,|PE|成等比数列,求$\overrightarrow{PD}$•$\overrightarrow{PE}$的取值范围.

查看答案和解析>>

同步练习册答案