分析 根据条件判断函数的周期性,利用函数奇偶性和周期性的关系进行转化求解即可
解答 解:∵设f(x)是定义在R上的奇函数,且对任意实数x都有f(x+3)=f(-x)=-f(x),
∴f(x+6)=-f(x+3)=f(x),
∴函数f(x)是周期为6的周期函数,
∵当x∈[0,2]时,f(x)=x2-4x,
∴f(0)=0,f(1)=2-1=1,f(2)=0,f(3)=-1,
∴f(2015)=f(335×6+5)=f(5)=-f(-5)-f(-5+6)=-f(1)=-3
f(2016)=f(6×336)=f(0)=0,
f(2015)+f(2016)=-3+0=-3
故答案为:-3
点评 本题主要考查函数值的计算,根据条件判断函数的周期性是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 55 | B. | 52 | C. | 39 | D. | 26 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com