精英家教网 > 高中数学 > 题目详情
18.在直角坐标平面内,已知两点A(1,0),B(4,0),设M是平面内的动点,并且|${\overrightarrow{BM}}$|=2|${\overrightarrow{AM}}$|.
(Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)自点B引直线l交曲线E于Q,N两点,求证:射线AQ与射线AN关于直线x=1对称.

分析 (Ⅰ)由已知条件,设点M坐标,代入|${\overrightarrow{BM}}$|=2|${\overrightarrow{AM}}$|,化简即可得动点M的轨迹E的方程;
(Ⅱ)射线AQ与射线AN关于直线x=1对称,证明kQA+kNA=0即可.

解答 (Ⅰ)解:设M(x,y),$|{\overrightarrow{BM}}|=\sqrt{{{(x-4)}^2}+{y^2}}$,$|{\overrightarrow{AM}}|=\sqrt{{{(x-1)}^2}+{y^2}}$,
由于$|{\overrightarrow{BM}}|=2|{\overrightarrow{AM}}|$,则$\sqrt{{{(x-4)}^2}+{y^2}}$=$2\sqrt{{{(x-1)}^2}+{y^2}}$,
化简得,x2+y2=4,
动点M的轨迹E的方程x2+y2=4.-------(4分)
(Ⅱ)证明:设Q(x1,y1),N(x2,y2),直线l:y=k(x-4),
联立$\left\{\begin{array}{l}{x^2}+{y^2}=4\\ y=k(x-4)\end{array}\right.$,得(1+k2)x2-8k2x+16k2-4=0,
判别式△=16(1-3k2)>0,解之:$-\frac{{\sqrt{3}}}{3}<k<\frac{{\sqrt{3}}}{3}$,${x_1}+{x_2}=\frac{{8{k^2}}}{{1+{k^2}}}$,${x_1}{x_2}=\frac{{16{k^2}-4}}{{1+{k^2}}}$,
又因为y1=k(x1-4),y2=k(x2-4),kQA+kNA=$\frac{y_1}{{{x_1}-1}}+\frac{y_2}{{{x_2}-1}}$=$\frac{{k({x_1}-4)({x_2}-1)+k({x_2}-4)({x_1}-1)}}{{({x_1}-1)({x_2}-1)}}$
=$k\frac{{2{x_1}{x_2}-5({x_1}+{x_2})+8}}{{({x_1}-1)({x_2}-1)}}$,
由于2x1x2-5(x1+x2)+8=$2•\frac{{16{k^2}-4}}{{1+{k^2}}}$$-5•\frac{{8{k^2}}}{{1+{k^2}}}$+$8•\frac{{1+{k^2}}}{{1+{k^2}}}$=0,
所以,kQA+kNA=0,即,kQA=-kNA
因此,射线AQ与射线AN关于直线x=1对称.-----------(12分)

点评 本题考查圆的方程,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.函数y=x-lnx的单调减区间为(  )
A.(0,1)B.(1,2)C.(-∞,-1)D.(-∞,-1)和(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=cosx-$\sqrt{3}$sinx.
(1)将函数f(x)化成正弦型三角函数
(2)求f(x)的值域.
(3)当x∈[0,$\frac{π}{2}$]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合A={y|y=x2+1},B={x|y=$\frac{1}{{\sqrt{{2^x}-2}}}}\right.}\right.$},则A∩B=(  )
A.[1,+∞)B.(0,+∞)C.(1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,设D是图中所示的矩形区域,E是D内函数y=cosx图象上方的点构成的区域.向D中随机投一点,则该点落入E(阴影部分)中的概率为$\frac{π-2}{π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)是定义在R上的奇函数,且对任意的x∈R都有f(x+3)-f(-x)=0,当x∈(0,1]时f(x)=x2-4x,则f(2015)+f(2016)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将5本不同的数学用书放在同一层书架上,则不同的放法有(  )
A.50B.60C.120D.90

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知正六棱锥S-ABCDEF的底面边长为2,高为1,现从该棱锥的7个顶点中随机取3个点构成三角形,设随机变量X表示所得的三角形的面积.
(1)求概率P(X=$\sqrt{3}$)的值;
(2)求X的分布列,并求其数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x∈N|x(2-x)≥0},B={x|-1≤x≤1},则A∩B=(  )
A.{x|0≤x≤2}B.{x|0<x<2}C.{0,1,2}D.{0,1}

查看答案和解析>>

同步练习册答案