精英家教网 > 高中数学 > 题目详情
9.(文科学生做)设命题p:函数f(x)=x3+ax2+ax是R上的单调递增函数,命题q:|a-1|≤m(m>0).
(1)当a=1时,判断命题p的真假,并说明理由;
(2)若q是p的充分不必要条件,求实数m的取值范围.

分析 (1)先求导,再根据判别式即可求出a的范围,问题得以解决,
(2)解绝对值不等式根据q是p的充分不必要条件,得到$\left\{\begin{array}{l}{1-m≥0}\\{1+m≤3}\\{m>0}\end{array}\right.$,解得即可.

解答 解:(1)函数f(x)=x3+ax2+ax是R上的单调递增函数,
∴f′(x)=3x2+2ax+a≥0,
∴△=4a2-12a≤0,
解得0≤a≤3,
∴当a=1时,命题p为真命题,
(2)由|a-1|≤m,(m>0),
解得1-m≤a≤1+m,
∵q是p的充分不必要条件,
∴q⇒p,
∴$\left\{\begin{array}{l}{1-m≥0}\\{1+m≤3}\\{m>0}\end{array}\right.$,
解得0<m≤1.
又当m=1时,p≠q,
∴实数m的取值范围为(0,1]

点评 本题考查了函数的单调性和的参数的取值范围,以及充分不必要条件和绝对值不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知cos2α+cos2β+cos2γ=1,则sinαsinβsinγ的最大值为(  )
A.$\frac{2\sqrt{3}}{9}$B.$\frac{2\sqrt{2}}{9}$C.$\frac{2\sqrt{6}}{9}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={1,2},B={1,2,…,4n}(n∈N*),设C={(x,y)|x整除y或y整除x,x∈A,y∈B},令f(n)表示集合C所含元素的个数.
(1)求f(1),f(2),f(3)的值;
(2)由(1)猜想f(n)的表达式,并用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某商场想通过检查发票存根及销售记录的2%来快速估计每月的销售总额,采取如下方法:从某本发票的存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票存根上的销售额组成一个调查样本.这种抽取样本的方法是(  )
A.抽签法B.随机数法C.系统抽样法D.其他方式的抽样

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=x2+x-alnx,则a<3是函数f(x)在[1,+∞)上单调递增的充分不必要条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对任意的非零实数a,b,若a?b的运算原理如图所示,且min{a,b,c}表示a,b,c中的最小值,则2?min{1,log0.30.1,30.1}的值为(  )
A.0B.1C.$2-log_{0.3}^{0.1}$D.2-30.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{{x}^{2}}{3}$-y2=1的渐近线上的一点A到其右焦点F的距离等于2,抛物线y2=2px(p>0)过点A,则该抛物线的方程为(  )
A.y2=2xB.y2=xC.y2=$\frac{1}{2}$xD.y2=$\frac{1}{4}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆C的圆心与双曲线M:y2-x2=$\frac{1}{2}$的上焦点重合,直线3x+4y+1=0与圆C相交于A,B两点,且|AB|=4.
(1)求圆C的标准方程;
(2)O为坐标原点,D(-2,0),E(2,0)为x轴上的两点,若圆C内的动点P使得|PD|,|PO|,|PE|成等比数列,求$\overrightarrow{PD}$•$\overrightarrow{PE}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若关于x,y的不等式组$\left\{\begin{array}{l}{x≤0}\\{x+2y≥0}\\{kx-y+1≥0}{\;}\end{array}\right.$(k≠0)表示的平面区域形状是直角三角形,则该区域的面积为(  )
A.$\frac{1}{4}$B.$\frac{4}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

同步练习册答案