精英家教网 > 高中数学 > 题目详情
20.已知复数z1=1-i,z1•z2+$\overline{{z}_{1}}$=2+2i,求复数z2

分析 由复数z1=1-i,求出$\overline{z}=1+i$,然后化简z1•z2,设出z2=a+bi(a,b∈R),由z1•z2=1+i,得(a+b)+(b-a)i=1+i,再由复数相等的条件列出方程,求解即可得答案.

解答 解:∵z1=1-i,∴$\overline{z}=1+i$,
∴z1•z2=2+$2i-\overline{{z}_{1}}$=2+2i-(1+i)=1+i.
设z2=a+bi(a,b∈R),由z1•z2=1+i,得(1-i)(a+bi)=1+i,
∴(a+b)+(b-a)i=1+i,
∴$\left\{\begin{array}{l}{a+b=1}\\{b-a=1}\end{array}\right.$,解得a=0,b=1,
∴z2=i.

点评 本题考查了复数代数形式的乘除运算,考查了复数相等的条件,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设集合A={2},B={x|ax-1=0,a∈R},若A∩B=B,则a=0或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{lnx}{x}$-1.
(I)求函数f(x)的单调区间;
(II)设m>0,若函数g(x)=2xf(x)-x2+2x+m在$[{\frac{1}{e},e}]$上有两个零点,求实数m的取值范围.
(III)证明:对?n∈N*,不等式$ln{(\frac{1+n}{n})^e}<\frac{1+n}{n}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,内角A、B、C所对的边分别是a、b、c,不等式${x^2}cosC+2xsinC+\frac{3}{2}≥0$对一切实数x恒成立.
(1)求cosC的取值范围;
(2)当∠C取最大值,且△ABC的周长为9时,求△ABC面积的最大值,并指出面积取最大值时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.有下列命题:
①复数z满足|z-1|+|z+1|=2则复数z所对应点Z的轨迹是一个椭圆;
②f′(x0)=$\lim_{h→0}\frac{{f({x_0}+h)-f({x_0})}}{h}=\lim_{x→{x_0}}\frac{{f(x)-f({x_0})}}{{x-{x_0}}}$=$\lim_{h→0}\frac{{f({x_0})-f({x_0}-h)}}{h}$;
③将5封信投入3个邮筒,不同的投法共有53种;
④已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是$\frac{1}{3}$,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是4和3;
⑤若a>0,b>0,f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值为9
其中正确的有:②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知不等式组$\left\{\begin{array}{l}x+y+2≤0\\ x-y+4≥0\\ y≥a\end{array}\right.$,若z=2x-y的最大值为-1,则a值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图在直角梯形ABCP中,AP∥BC,AB=BC=$\frac{1}{2}$AP=2,D是AP的中点,E,G分别为PC,CB的中点,将△PCD沿CD折起,使得PD⊥平面ABCD,F为线段PD上一动点.当二面角G-EF-D的大小为$\frac{π}{4}$时,求FG与平面PBC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=mx-alnx-m\;,\;\;g(x)=\frac{x}{{{e^{x-1}}}}$,其中m,a均为实数,e为自然对数的底数.
(I)求函数g(x)的极值;
(II)设m=1,a<0,若对任意的x1,x2∈[3,4](x1≠x2),$|{f({x_2})-f({x_1})}|<|{\frac{1}{{g({x_2})}}-\frac{1}{{g({x_1})}}}|$恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a>0,b>0,函数f(x)=|x+a|+|2x-b|的最小值为1.
(1)求2a+b的值;
(2)若a+2b≥tab,求实数t的最大值.

查看答案和解析>>

同步练习册答案