精英家教网 > 高中数学 > 题目详情
19.已知圆C:(x-1)2+(y-2)2=2,则圆C被动直线l:kx-y+2-k=0所截得的弦长2$\sqrt{2}$.

分析 圆C:(x-1)2+(y-2)2=2的圆心C(1,2),半径r=$\sqrt{2}$,再推导出直线l:kx-y+2-k=0过圆心C(1,2),由此能求出圆C被动直线l:kx-y+2-k=0所截得的弦长.

解答 解:圆C:(x-1)2+(y-2)2=2的圆心C(1,2),半径r=$\sqrt{2}$,
动直线l:kx-y+2-k=0整理,得:(x-1)k+2-y=0,
解方程组$\left\{\begin{array}{l}{x-1=0}\\{2-y=0}\end{array}\right.$,得x=1,y=2,
∴直线l:kx-y+2-k=0过圆心C(1,2),
∴圆C被动直线l:kx-y+2-k=0所截得的弦长为$2\sqrt{2}$.
故答案为:2$\sqrt{2}$.

点评 本题考查弦长的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=(x+2)2-1在区间[a,0]上的最大值为3,则在满足条件的实数a中任取一个,使函数f(x)=$\frac{{x}^{3}}{3}$-x2-a有3个零点的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图1,已知正方形ABCD的边长为2,E、F分别为边AD、AB的中点.将△ABC沿BE折起,使平面ABE⊥平面BCDE.如图2,点G为AC的中点.

(Ⅰ)求证:DG∥平面ABE;
(Ⅱ)求直线CE与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在一次高三数学模拟测验中,对本班“选考题”选答情况进行统计结果如下:
选修4-1选修4-4选修4-5
男生(人)1064
女生(人)2614
(Ⅰ)在统计结果中,如果把“选修4-1”和“选修4-4”称为“几何类”,把“选修4-5”称为“非几何类”,能否有99%的把握认为学生选答“几何类”与性别有关?
(Ⅱ)已知本班的两名数学课代表都选答的是“选修4-5”,现从选答“选修4-1”、“选修4-4”和“选修4-5”的同学中,按分层抽样的方法随机抽取7人,记抽取到数学课代表的人数为X,求X得分布列及数学期望.
附:.
P(k2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线l:x-y+1=0上,则点C与坐标原点的距离为(  )
A.$\sqrt{13}$B.5C.13D.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.当直线l与C相切时,实数a=$±\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知某几何体的三视图如图所示,则该几何体的体积为(  )
A.180B.360C.144+72$\sqrt{2}$D.108

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.平面α的斜线与平面α所成的角是35°,则与平面α内所有不过斜足的直线所成的角的范围是(  )
A.(0°,35°]B.(0°,90°]C.[35°,90°)D.[35°,90°]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)用反证法证明:已知实数a,b,c满足a+b+c=1,求证:a、b、c中至少有一个数不大于$\frac{1}{3}$
(2)用分析法证明:$\sqrt{6}$+$\sqrt{7}$>2$\sqrt{2}$+$\sqrt{5}$.

查看答案和解析>>

同步练习册答案