精英家教网 > 高中数学 > 题目详情
在△ABC中,已知为
2cosA-3sinC
cosB
=
3c-2a
b
,求
a
c
考点:余弦定理
专题:解三角形
分析:利用正弦定理及其
2cosA-3sinC
cosB
=
3c-2a
b
,可得
2cosA-3cosC
cosB
=
3sinC-2sinA
sinB
,化简整理可得2sinC=3sinA,即可得出.
解答: 解:由正弦定理
a
sinA
=
b
sinB
=
c
sinC
═2R得:a=2RsinA;b=2RsinB;c=2RsinC,
2cosA-3cosC
cosB
=
3sinC-2sinA
sinB

即2cosA•sinB-3sinB•cosC=3cosB•sinC-2sinAcosB,
整理得:2(sinAcosB+cosA•sinB)=3(sinB•cosC+cosB•sinC),
即2sin(A+B)=3sin(B+C),
∵A+B=π-C;B+C=π-A,
∴2sin(π-C)=3sin(π-A),
即2sinC=3sinA,
a
c
=
sinA
sinC
=
2
3
点评:本题考查了正弦定理、两角和差的正弦公式、三角形的内角和定理、诱导公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是边长为1的菱形,∠ABC=
π
3
,且PA⊥平面ABCD,PA=2,M为PA的中点.
(Ⅰ)求证:直线PC∥平面MBD;
(Ⅱ)求异面直线AB与MD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x(4-x)(0<x<4)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=mx2-(4+m2)x,其中m∈R,且m>0,区间D={x|f(x)<0}.
(1)求区间D的长度(区间(a,b)的长度定义为b-a);
(2)记区间D的长度为g(m),试用函数的单调性定义证明g(m)在(0,2)上单调递减,在(2,+∞)上单调递增;
(3)给定常数t∈(0,2),当2-t≤m≤2+t时,求区间D的长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若sin2A+sin2C+cos2B<1,则△ABC一定是(  )
A、钝角三角形B、直角三角形
C、锐角三角形D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂生产某种零件,每个零件的成本为40元,出厂单价为60元,该厂为鼓励销售商,决定当一次性订购量不少于100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于50元(例如一次性订购101个零件,则101个零件的单价是60-1×0.02=59.98元).
(1)当销售商一次订购500个零件时,该厂获得的利润是多少元?
(2)设一次订购量为X个时,零件的出厂单价为Y元.写出y=f(X)的函数表达式;
(3)若厂方现有600个零件,当销售商一次性订购量x(x>100)为多少个时,厂方的销售额g(x)最大?(销售额g(x)=销售数量×销售单价)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,D是△ABC的边AB的中点,则向量
CD
=(  )
A、-
BC
+
DA
B、-
BC
-
BD
C、
BC
-
BD
D、
BC
+
DA

查看答案和解析>>

科目:高中数学 来源: 题型:

在南沙群岛上,A岛与B岛相距8海里,一艘军舰在海上巡逻,巡逻过程中,从军舰上看A、B两岛视角为直角,试写出军舰巡逻路线的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y=-x2+3上存在关于直线y=x对称的相异两点A,B,则|AB|等于
 

查看答案和解析>>

同步练习册答案