精英家教网 > 高中数学 > 题目详情
5.已知定点F(0,1),定直线l:y=-1,动圆M过点F,且与直线l相切.
(Ⅰ)求动圆M的圆心轨迹C的方程;
(Ⅱ)过点F的直线与曲线C相交于A,B两点,分别过点A,B作曲线C的切线l1,l2,两条切线相交于点P,求△PAB外接圆面积的最小值.

分析 (Ⅰ)利用直接法,即可求动圆M的圆心轨迹C的方程;
(Ⅱ)证明△PAB的外接圆的圆心为线段AB的中点,线段AB是直径.得到当k=0时线段AB最短,最短长度为4,此时圆的面积最小,最小面积为4π.

解答 解:(Ⅰ)设点M到直线l的距离为d,依题意|MF|=d.
设M(x,y),则有$\sqrt{{x^2}+{{({y-1})}^2}}$=|y+1|.
化简得x2=4y.
所以点M的轨迹C的方程为x2=4y.
(Ⅱ)设lAB:y=kx+1,
代入x2=4y中,得x2-4kx-4=0.
设A(x1,y1),B(x2,y2),
则x1+x2=4k,x1•x2=-4.
所以$|{AB}|=\sqrt{1+{k^2}}$$•|{{x_1}-{x_2}}|=4({{k^2}+1})$.
因为C:x2=4y,即$y=\frac{x^2}{4}$,所以$y'=\frac{x}{2}$.
所以直线l1的斜率为${k_1}=\frac{x_1}{2}$,直线l2的斜率为${k_2}=\frac{x_2}{2}$.
因为${k_1}{k_2}=\frac{{{x_1}{x_2}}}{4}=-1$,
所以PA⊥PB,即△PAB为直角三角形.
所以△PAB的外接圆的圆心为线段AB的中点,线段AB是直径.
因为|AB|=4(k2+1),
所以当k=0时线段AB最短,最短长度为4,此时圆的面积最小,最小面积为4π.

点评 本题考查轨迹方程,考查直线与抛物线位置关系的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.同时掷3枚硬币,那么互为对立事件的是(  )
A.最少有1枚正面和最多有1枚正面B.最少有2枚正面和恰有1枚正面
C.最多有1枚正面和最少有2枚正面D.最多有1枚正面和恰有2枚正面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知某学校有1680名学生,现在采用系统抽样的方法抽取84人,调查他们对学校食堂的满意程度,将1680人,按1,2,3,…,1680随机编号,则在抽取的84人中,编号落在[61,160]内的人数为(  )
A.7B.5C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{lnx}{x}$,g(x)=ex
(Ⅰ)若关于x的不等式f(x)≤mx≤g(x)恒成立,求实数m的取值范围;
(Ⅱ)若x1>x2>0,求证:[x1f(x1)-x2f(x2)]$({x_1^2+x_2^2})$>2x2(x1-x2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在各项都为正数的等比数列{an}中,已知a1=2,$a_{n+2}^2+4a_n^2=4a_{n+1}^2$,则数列{an}的通项公式an=${2}^{\frac{n+1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(1,2),向量$\overrightarrow{c}$在$\overrightarrow{a}$方向上的投影为2.若$\overrightarrow{c}$∥$\overrightarrow{b}$,则|$\overrightarrow{c}$|的大小为(  )
A..2B.$\sqrt{5}$C.4D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过动点M作圆:(x-2)2+(y-2)2=1的切线MN,其中N为切点,若|MN|=|MO|(O为坐标原点),则|MN|的最小值是$\frac{{7\sqrt{2}}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=sin(ωx+$\frac{π}{3}$)(0<ω<1)的图象关于点(-2,0)对称,则ω=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点P(a,b)及圆O:x2+y2=r2,则“点P在圆O内”是“直线l:ax+by=r2与圆O相离”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案