精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,底面为正方形, 平面 分别是 的中点.

(Ⅰ)求证: 平面

(Ⅱ)求三棱锥的体积;

(Ⅲ)求证:平面平面

【答案】(Ⅰ)详见解析(Ⅱ)(Ⅲ)详见解析

【解析】试题分析:

(Ⅰ)证明:连接,与交于点,连接,易证,可知平面

(Ⅱ)由题可求 ,进而证明.,则三棱锥的体积可求;

(Ⅲ)首先证明平面,又,即平面,,所以平面平面. 

试题解析:(Ⅰ)证明:连接,与交于点,连接

中, 分别是 的中点,

所以

又因为平面 平面

所以平面

(Ⅱ)解:因为平面,所以为棱锥的高.

因为,底面是正方形,

所以

因为中点,所以

所以

(Ⅲ)证明:因为平面 平面

所以

在等腰直角中,

平面 平面

所以平面

所以平面

平面

所以平面平面. 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

知圆锥曲线参数和定点此圆锥曲线的左、右焦点,以原点,以的正半轴为极轴建立极坐标系.

1直线直角坐标方程;

2过点与直线直的直线此圆锥曲线于两点,求值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)求证:曲线在点处的切线过定点;

(2)若在区间上的极大值,但不是最大值,求实数的取值范围;

(3)求证:对任意给定的正数,总存在,使得上为单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆上一点与椭圆右焦点的连线垂直于

(1)求椭圆的方程;

(2)与抛物线相切于第一象限的直线,与椭圆交于两点,与轴交于点,线段的垂直平分线与轴交于点,求直线斜率的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下茎叶图记录了甲,乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以表示.

1)如果,求乙组同学植树棵数的平均数和方差;

2)如果,分别从甲,乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差,其中……的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为参数),曲线上的点对应的参数以坐标原点为极点轴正半轴为极轴建立极坐标系的极坐标是直线过点且与曲线交于不同的两点

(1)求曲线的普通方程

(2)求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆.

(1)若直线过定点,且与圆相切,求的方程;

(2)若圆的半径为,圆心在直线上,且与圆外切,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某软件公司新开发一款学习软件,该软件把学科知识设计为由易到难共12关的闯关游戏.为了激发闯关热情,每闯过一关都奖励若干慧币(一种网络虚拟币).该软件提供了三种奖励方案:第一种,每闯过一关奖励40慧币;第二种,闯过第一关奖励40慧币,以后每一关比前一关多奖励4慧币;第三种,闯过第一关奖励慧币,以后每一关比前一关奖励翻一番(即增加1倍).游戏规定:闯关者须于闯关前任选一种奖励方案.

(1)设闯过关后三种奖励方案获得的慧币总数依次为,试求出的表达式;

(2)如果你是一名闯关者,为了得到更多的慧币,你应如何选择奖励方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

I)求函数上的最值;

II)已知函数,求证:恒成立.

查看答案和解析>>

同步练习册答案