精英家教网 > 高中数学 > 题目详情
19.在极坐标系中,圆ρ=8sinθ上的点到直线θ=$\frac{π}{3}$(ρ∈R)距离的最大值是(  )
A.-4B.-7C.1D.6

分析 把圆与直线的极坐标方程分别化为直角坐标方程,求出圆心到直线的距离d,即可得出最大值d+r.

解答 解:圆ρ=8sinθ,即ρ2=8ρsinθ,化为直角坐标方程:x2+y2=8y,配方为:x2+(y-4)2=16.可得圆心C(0,4),半径r=4.
直线θ=$\frac{π}{3}$(ρ∈R)化为直角坐标方程:y=$\sqrt{3}$x.
圆心C到直线的距离d=$\frac{4}{\sqrt{(\sqrt{3})^{2}+{1}^{2}}}$=2,
因此圆ρ=8sinθ上的点到直线θ=$\frac{π}{3}$(ρ∈R)距离的最大值=2+4=6.
故选:D.

点评 本题考查了极坐标方程化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sin(πx+$\frac{π}{4}$)和函数g(x)=cos(πx+$\frac{π}{4}$)在区间[-$\frac{5}{4}$,$\frac{7}{4}$]上的图象交于A,B,C三点,则△ABC的面积是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{3\sqrt{2}}{4}$C.$\sqrt{2}$D.$\frac{5\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设l,m表示不同直线,α,β表示不同平面,则下列结论中正确的是(  )
A.若l∥α,l⊥m,则m⊥αB.若l∥α,l⊥m,m?β,则α⊥β
C.若l∥α,l∥m,则m∥αD.若α∥β,l∥α,l∥m,m?β,则m∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设F1、F2分别是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点,P是椭圆C上的点,且$\overrightarrow{P{F}_{2}}$•$\overrightarrow{{F}_{1}{F}_{2}}$=0,坐标原点O到直线PF1的距离是$\frac{1}{3}|{O{F_2}}|$.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)过椭圆C的上顶点B作斜率为k(k>0)的直线l交椭圆C于另一点M,点N在椭圆C上,且BM⊥BN,求证:存在$k∈[{\frac{1}{4},\frac{1}{2}}]$,使得|BN|=2|BM|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.甲、乙、丙三名同学参加歌唱、围棋、舞蹈、阅读、游泳5个课外活动,每个同学彼此独立地选择参加3个活动,其中甲同学喜欢唱歌但不喜欢下棋,所以必选歌唱,不选围棋,另在舞蹈、阅读、游泳中随机选2个,同学乙和丙从5个课外活动中任选3个.
(1)求甲同学选中舞蹈且乙、丙两名同学未选中舞蹈的概率;
(2)设X表示参加舞蹈的同学人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知元素为实数的集合S满足下列条件:①0∉S,1∉S;②若a∈S,则$\frac{1}{1-a}$∈S.
(1)已知2∈S,试求出S中的其它所有元素;
(2)若{3,-3}⊆S,求使元素个数最少的集合S;
(3)若非空集合S为有限集,则你对集合S的元素个数有何猜测?并请证明你的猜测正确.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={1,2,3},B={1,3},则A∩B=(  )
A.{2}B.{1,3}C.{1,2}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l:$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),曲线C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}\right.$(θ为参数).
(1)设l与C1相交于A,B两点,求|AB|;
(2)若把曲线C1上各点的横坐标伸长为原来的$\sqrt{3}$倍,纵坐标伸长为原来的3倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.实数x,y满足$\left\{\begin{array}{l}{x≤4}\\{x+y-2≥0}\\{x-y+8≥0}\end{array}\right.$,若z=$\frac{1}{2}$ax+y的最大值为2a+12,最小值为2a-2,则a的取值范围是[-2,2].

查看答案和解析>>

同步练习册答案