分析 设另一焦点为D,则可再Rt△ABC中,根据勾股定理求得BC,进而根据椭圆的定义知AC+AB+BC=4a求得a.再利用AC+AD=2a求得AD最后在Rt△ACD中根据勾股定理求得2c=CD,利用离心率公式即可求得答案.
解答 解:设另一焦点为D,
∵Rt△ABC中,AB=AC=1,
∴BC=$\sqrt{2}$,
∵AC+AD=2a,
AC+AB+BC=1+1+$\sqrt{2}$=4a,
∴a=$\frac{2+\sqrt{2}}{4}$,
又∵AC=1,
∴AD=$\frac{\sqrt{2}}{2}$.
在Rt△ACD中焦距2c=CD=$\sqrt{A{C}^{2}+A{D}^{2}}$=$\frac{\sqrt{6}}{2}$,
椭圆的离心率e=$\frac{c}{a}$=$\frac{\sqrt{6}}{2+\sqrt{2}}$=$\sqrt{6}$-$\sqrt{3}$
故答案为:$\sqrt{6}$-$\sqrt{3}$.![]()
点评 本题主要考查了椭圆的简单性质和解三角形的应用.考查椭圆的定义和椭圆中短轴,长轴和焦距的关系,考查数形结合思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | $\frac{{m}^{2}}{5}$-1 | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com