| A. | 关于点(-2,0)对称 | B. | 关于点(0,-2)对称 | ||
| C. | 关于直线x=-2对称 | D. | 关于直线x=0对称 |
分析 根据三角函数的平移变换求出g(x),通过图象的对称中点坐标可得判断.
解答 解:函数$f(x)=3sin({3x-\frac{π}{4}})$
令$3x-\frac{π}{4}=kπ$(k∈Z),
解得x=$\frac{kπ}{3}+\frac{π}{12}$
∴对称中心坐标是($\frac{k}{3}π+\frac{π}{12}$,0)
函数$f(x)=3sin({3x-\frac{π}{4}})$的图象向左平移$\frac{π}{4}$个单位,再向下平移4个单位,可得g(x)=3sin(3x+$\frac{π}{2}$)-4
令3x+$\frac{π}{2}$=kπ(k∈Z),
解得x=$\frac{kπ}{3}-\frac{π}{6}$
∴对称中心坐标是($\frac{kπ}{3}-\frac{π}{6}$,-4)
对称中心不相同,故C,D选项不对.
两个函数对称的纵坐标为-2,故A不对.
故选B.
点评 本题主要考查了三角函数的图象的平移变换后的对称性的判断.利用对称中心或对称轴即可判断.
科目:高中数学 来源: 题型:选择题
| A. | [9,13] | B. | (3,9) | C. | [9,+∞) | D. | (9,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若$\frac{1}{a}>\frac{1}{b}$,则a<b | |
| B. | 若命题$P:?x∈({0,π}),x+\frac{1}{sinx}≤2$,则?P为真命题 | |
| C. | 已知命题p,q,“p为真命题”是“p∧q为真命题”的充要条件 | |
| D. | 若f(x)为R上的偶函数,则$\int_{-1}^1{f(x)dx}=0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | 0 | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3.1 | B. | 3.14 | C. | 3.15 | D. | 3.2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com