精英家教网 > 高中数学 > 题目详情
16.如图,在棱长为1的正方体ABCD-A1B1C1D1中,E在B1D1上,且ED1=2B1E,AC与BD交于点O.
(Ⅰ)求证:AC⊥平面BDD1B1
(Ⅱ)求三棱锥O-CED1的体积.

分析 (Ⅰ)证明B1B⊥AC,利用AC⊥BD,即可证明AC⊥平面BDD1B1
(Ⅱ)利用等体积转化,求三棱锥O-CED1的体积.

解答 (Ⅰ)证明:∵B1B⊥平面ABCD,AC?平面ABCD,
∴B1B⊥AC,
∵AC⊥BD,BD∩B1B=B,
∴AC⊥平面BDD1B1
(Ⅱ)解:∵正方体棱长为1,∴B1D1=$\sqrt{2}$,ED1=$\frac{2\sqrt{2}}{3}$,
∴${S}_{△OE{D}_{1}}$=$\frac{1}{2}•E{D}_{1}•D{D}_{1}$=$\frac{1}{2}×\frac{2\sqrt{2}}{3}×1$=$\frac{\sqrt{2}}{3}$,
∵AC⊥平面BDD1B1
∴CO⊥平面OED1
∵CO=$\frac{\sqrt{2}}{2}$,
∴三棱锥O-CED1的体积=三棱锥C-OED1的体积=$\frac{1}{3}×\frac{\sqrt{2}}{3}×\frac{\sqrt{2}}{2}$=$\frac{1}{9}$.

点评 本题考查线面垂直,考查三棱锥O-CED1的体积,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知中心在原点O的圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点P($\sqrt{3}$,$\frac{1}{2}$),离心率e=$\frac{\sqrt{3}}{2}$.
(I)求椭圆C的标准方程;
(Ⅱ)动直线1:y=kx+m与椭圆相交于A,B两点,且△AOB的面积恒为1,若M为线段AB的中点,问是否存在两个定点P,Q,使得|MP|+|MQ|为定值?若存在,求P,Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若抛物线y=-x2-2x+m及y=2x相交于不同的两点A,B.
(1)求m的取值范围;
(2)求|AB|;
(3)求线段AB的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,已知曲线C1:$\left\{\begin{array}{l}{x=t+1}\\{y=1-2t}\end{array}\right.$(t为参数)与曲线C2:$\left\{\begin{array}{l}{x=acosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数,a>0).
(Ⅰ)若曲线C1与曲线C2有一个公共点在x轴上,求a的值;
(Ⅱ)当a=3时,曲线C1与曲线C2交于A,B两点,求A,B两点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线3x+2y+6=0和2x+5y-7=0的交点坐标为(  )
A.(-4,-3)B.(4,3)C.(-4,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=(x-a)2-a2,且对x∈R,恒有f(x+1)≥f(x),则实数a的取值范围为(-∞,$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义方程f(x)=f′(x)的实数根x0叫做函数的“新驻点”,若函数g(x)=sinx(0<x<π),h(x)=lnx(x>0),φ(x)=x3(x≠0)的“新驻点”分别为a,b,c,则a,b,c的大小关系为(  )
A.a>b>cB.c>b>aC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$|\overrightarrow a|=|\overrightarrow b|=1$,$\overrightarrow a$与$\overrightarrow b$的夹角为120°,
求:(1)$\overrightarrow a•\overrightarrow b$;
(2)$(3\overrightarrow b-2\overrightarrow a)•(4\overrightarrow a+\overrightarrow b)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若等差数列{an}的前n项和为Sn,且7S5+5S7=70,则a2+a5=(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案