分析 (Ⅰ)求出函数的导数,解关于导函数的方程,根据函数的极值,求出a的范围即可;
(Ⅱ)解关于导函数的不等式,求出函数的单调区间,求出函数的极值,从而求出a的值,求出函数的解析式即可.
解答 解:(I)由f(0)=0,解得:c=0,
故f′(x)=x2+ax+b,f′(1)=0,得:b=-a-1,
∴f′(x)=(x-1)(x+a+1),
由f′(x)=0,解得:x=1或x=-a-1,因为当x=1时取得极大值,
所以-a-1>1,得:a<-2,所以a的范围是(-∞,-2); …(5分)
(II)由下表:
| x | (-∞,1) | 1 | (1,-a-1) | -a-1 | (-a-1,+∞) |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | 递增 | 极大值-$\frac{1}{2}$a-$\frac{2}{3}$ | 递减 | 极小值($\frac{1}{6}$a+$\frac{2}{3}$)(a+1)2 | 递增 |
点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | f(1)<f(2)<f(4) | B. | f(2)<f(1)<f(4) | C. | f(4)<f(2)<f(1) | D. | f(4)<f(1)<f(2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,2] | B. | [0,2] | C. | [-1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 3 | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com