| A. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{8}$=1 | C. | x2-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{4}$-y2=1 |
分析 由题意可得c=$\sqrt{5}$,即a2+b2=5,求出渐近线方程代入抛物线的方程,运用判别式为0,解方程可得a=2,b=1,进而得到双曲线的方程.
解答 解:由题意可得c=$\sqrt{5}$,即a2+b2=5,
双曲线的渐近线方程为y=±$\frac{b}{a}$x,
将渐近线方程和抛物线y=$\frac{1}{4}$x2+$\frac{1}{4}$联立,
可得$\frac{1}{4}$x2±$\frac{b}{a}$x+$\frac{1}{4}$=0,
由直线和抛物线相切的条件,可得
△=$\frac{{b}^{2}}{{a}^{2}}$-4×$\frac{1}{4}$×$\frac{1}{4}$=0,
即有a2=4b2,
解得a=2,b=1,
可得双曲线的方程为$\frac{{x}^{2}}{4}$-y2=1.
故选:D.
点评 本题考查双曲线的方程的求法,注意运用渐近线和抛物线相切的条件:判别式为0,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-4$\sqrt{2}$-5,+∞) | B. | (4$\sqrt{2}$-5,+∞) | C. | (-4$\sqrt{2}$-5,1) | D. | (4$\sqrt{2}$-5,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | ¬p∨q | C. | p∧¬q | D. | ¬p∧¬q |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 58 | B. | 62 | C. | 238 | D. | 242 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com