分析 由正弦定理可得基本不等式可得sinC的范围,再由sinC的值域可得sinC的值为1,在三角形中可得.
解答 解:∵在△ABC中,$\frac{a}{sinB}+\frac{b}{sinA}$=2c,
∴由正弦定理和基本不等式可得:
2sinC=$\frac{sinA}{sinB}$+$\frac{sinB}{sinA}$≥2,
当且仅当$\frac{sinA}{sinB}$=$\frac{sinB}{sinA}$即sinA=sinB时取等号,
∴sinC≥1,由又sinC≤1,故sinC=1,
∴在三角形中∠C=$\frac{π}{2}$,
故答案为:$\frac{π}{2}$.
点评 本题考查正弦定理解三角形,涉及基本不等式求最值,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4i | B. | -4i | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -5 | B. | $-\frac{3}{2}$ | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (k-$\frac{1}{8}$,k+$\frac{1}{8}$),k∈Z | B. | (2k-$\frac{1}{8}$,2k+$\frac{1}{8}$),k∈Z | C. | (4k-$\frac{1}{8}$,4k+$\frac{1}{8}$),k∈Z | D. | (8k-$\frac{1}{8}$,8k+$\frac{1}{8}$),k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{8}$=1 | C. | x2-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{4}$-y2=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com