精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\frac{{e}^{x}}{|x|}$,关于x的方程f2(x)-2af(x)+a-1=0(m∈R)有四个相异的实数根,则a的取值范围是($\frac{{e}^{2}-1}{2e-1}$,+∞).

分析 将函数f(x)表示为分段函数形式,判断函数的单调性和极值,利用换元法将方程转化为一元二次方程,利用一元二次函数根与系数之间的关系进行求解即可.

解答 解:当x>0时,f(x)=$\frac{{e}^{x}}{x}$,函数的导数f′(x)=$\frac{{e}^{x}•x-{e}^{x}}{{x}^{2}}$=$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
当x>1时,f′(x)>0,当0<x<1时,f′(x)<0,则当x=1时 函数取得极小值f(1)=e,
当x<0时,f(x)=-$\frac{{e}^{x}}{x}$,函数的导数f′(x)=-$\frac{{e}^{x}•x-{e}^{x}}{{x}^{2}}$=-$\frac{{e}^{x}(x-1)}{{x}^{2}}$,此时f′(x)>0恒成立,
此时函数为增函数,
作出函数f(x)的图象如图:
设t=f(x),则t>e时,t=f(x)有3个根,
当t=e时,t=f(x)有2个根
当0<t<e时,t=f(x)有1个根,
当t≤0时,t=f(x)有0个根,
则f2(x)-2af(x)+a-1=0(m∈R)有四个相异的实数根,
等价为t2-2at+a-1=0(m∈R)有2个相异的实数根,
其中0<t<e,t>e,
设h(t)=t2-2at+a-1,
则$\left\{\begin{array}{l}{h(0)>0}\\{h(e)<0}\\{-\frac{-2a}{2}=a>0}\end{array}\right.$,即$\left\{\begin{array}{l}{a-1>0}\\{{e}^{2}-2ae+a-1<0}\\{a>0}\end{array}\right.$,即$\left\{\begin{array}{l}{a>1}\\{a>\frac{{e}^{2}-1}{2e-1}}\end{array}\right.$,
即a>$\frac{{e}^{2}-1}{2e-1}$,
故答案为:($\frac{{e}^{2}-1}{2e-1}$,+∞)

点评 本题主要考查函数与方程的应用,利用换元法转化为一元二次函数,利用数形结合以及根与系数之间的关系是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设数列{an}的前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,且a2=-2,则a7=(  )
A.16B.32C.64D.128

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,满足a1=$\frac{1}{3},{S_{n+1}}={S_n}+4{a_n}$+3.
(Ⅰ)证明:{an+1}是等比数列;
(Ⅱ)求数列{an}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,角A,B,C的对边分别是a,b,c,若$\frac{a}{sinB}+\frac{b}{sinA}$=2c,则∠C的大小是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设各项均为正数的数列{an}的前n项之积为Tn,若T=${2}^{{n}^{2}-n}$,则数列{$\frac{{a}_{n}+63}{{2}^{n-1}}$}中最小项的序号n=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知命题p:若方程x2+y2+2mx-2y+2m=0表示圆,则实数m≠1;
命题q:若以原点为对称中心,坐标轴为对称轴的双曲线的一条渐近线与直线2x-y+1=0平行,则双曲线的离心率等于$\sqrt{5}$,下列命题真确的是(  )
A.p∧qB.¬p∨qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x-1,x<0}\\{-{e}^{x}-x,x≥0}\end{array}\right.$若关于x的方程f(x)+m=0有3个实数根,则实数m的取值范围为(  )
A.(1,3)B.(-3,-1)C.(1,5)D.(-5,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某小组共有13人,其中男生8人,女生5人,从中选出3人,要求至多有2名男生,则不同的选法共有(  )
A.140种B.150种C.220种D.230种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若f(x)=x+$\frac{4}{x}$,则下列结论正确的是(  )
A.f(x)的最小值为4
B.f(x)在(0,2)上单调递减,在(2,+∞)上单调递增
C.f(x)的最大值为4
D.f(x)在(0,2)上单调递增,在(2,+∞)上单调递减

查看答案和解析>>

同步练习册答案