精英家教网 > 高中数学 > 题目详情
12.已知平面向量$\overrightarrow a,\overrightarrow b$,$\overrightarrow a=({-1,1}),\overrightarrow b=({2,k})$,若$\overrightarrow a∥\overrightarrow b$,则实数k=(  )
A.2B.-2C.4D.-4

分析 利用向量共线定理即可得出.

解答 解:∵$\overrightarrow a∥\overrightarrow b$,∴2+k=0,解得k=-2.
故选:B.

点评 本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若直线ax-by+2=0 (a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为(  )
A.$\frac{3}{2}$+$\sqrt{2}$B.$\sqrt{2}$C.$\frac{1}{4}$D.$\frac{3}{2}$+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.数列{an}满足an+1=$\left\{\begin{array}{l}2{a_n},0≤{a_n}≤\frac{1}{2}\\ 2{a_n}-1,\frac{1}{2}<{a_n}<1\end{array}$,a1=$\frac{3}{5}$,Sn为{an}的前n项和,则S2016=1008.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设tanα,tanβ是方程x2+3x-2=0的两个根,则tan(α+β)的值为(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一般吧数字出现的规律满足如图的模型称为蛇形模型:数字1出现在第1行,数字2,3出现在第2行;数字6,5,4(从左到右)出现在第3行;数字7,8,9,10出现在第4行,以此类推,第21行从左到右的第4个数字应是228.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow m=(sinx,-1)$,向量$\overrightarrow n=(\sqrt{3}cosx,-\frac{1}{2})$,函数$f(x)=(\overrightarrow m+\overrightarrow n)•\overrightarrow m$.
(1)求f(x)的解析式及单调增区间;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=2$\sqrt{3}$,c=4,且f(A)恰是f(x)在$[{0,\frac{π}{2}}]$上的最大值,求A,b和△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\sqrt{2}sinωxcosωx+\sqrt{2}{cos^2}ωx-\frac{{\sqrt{2}}}{2}({ω>0})$,若x=$\frac{π}{4}$是函数f(x)的一条对称轴,则实数ω的值可以是(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|0<x<2},B={x|1-x2>0},则A∩(∁RB)=(  )
A.{x|0≤x≤1}B.{x|1≤x<2}C.{x|-1<x≤0}D.{x|0≤x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:

则第n个图案中的地面砖共有5n+2块.

查看答案和解析>>

同步练习册答案