精英家教网 > 高中数学 > 题目详情
12.若直线ax-by+2=0 (a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为(  )
A.$\frac{3}{2}$+$\sqrt{2}$B.$\sqrt{2}$C.$\frac{1}{4}$D.$\frac{3}{2}$+2$\sqrt{2}$

分析 先求出圆心和半径,由弦长公式求得圆心到直线ax-by+2=0的距离d=0,直线ax-by+2=0经过圆心,可得$\frac{1}{2}$a+b=1,代入式子再利用基本不等式可求式子的最小值.

解答 解:圆x2+y2+2x-4y+1=0 即 (x+1)2+(y-2)2=4,圆心为(-1,2),半径为2,
设圆心到直线ax-by+2=0的距离等于d,则由弦长公式得2$\sqrt{4-{d}^{2}}$=4,
解得d=0,即
直线ax-by+2=0经过圆心,
∴-a-2b+2=0,
∴$\frac{1}{2}$a+b=1,
∴($\frac{1}{a}$+$\frac{1}{b}$)($\frac{1}{2}$a+b)=$\frac{1}{2}$+1+$\frac{b}{a}$+$\frac{a}{2b}$≥$\frac{3}{2}$+2$\sqrt{\frac{b}{a}•\frac{a}{2b}}$=$\frac{3}{2}$+$\sqrt{2}$,当且仅当a=$\sqrt{2}$b时等号成立,
故式子的最小值为$\frac{3}{2}$+$\sqrt{2}$,
故选:A

点评 本题考查直线和圆的位置关系,弦长公式以及基本不等式的应用,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.某品牌电动汽车的耗电量y与速度x之间满足的关系式为y=$\frac{1}{3}$x3-$\frac{39}{2}$x2-40x(x>0),为使耗电量最小,则速度为(  )
A.30B.40C.50D.60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是函数y=f(x)求值的程序框图,若输出函数y=f(x)的值域为[4,8],则输入函数y=f(x)的定义域不可能为(  )
A.[-3,-2]B.[-3,-2)∪{2}C.[-3,2]D.[-3,-2]∪{2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数$f(x)=\left\{\begin{array}{l}2{e^{x-1}},x<2\\{log_3}({{x^2}-1}),x≥2\end{array}\right.$,则f(f(2))的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平面直角坐标系xOy中,已知双曲线C1:2x2-y2=1,过C1的左顶点引C1的一条渐进线的平行线,则该直线与另一条渐进线及x轴围成的三角形的面积(  )
A.$\frac{{\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{8}$D.$\frac{{\sqrt{2}}}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.抛物线y2=4x的焦点到双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线的距离是$\frac{\sqrt{3}}{2}$,则双曲线的虚轴长是(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若x>0,y>0,且$\frac{1}{2x+y}$+$\frac{2}{x+y}$=2,则4x+3y的最小值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算:${16^{\frac{1}{2}}}+{(\frac{1}{81})^{-0.25}}-{(-\frac{1}{2})^0}$
化简:$(2{a^{\frac{1}{4}}}{b^{-\frac{1}{3}}})(-3{a^{-\frac{1}{2}}}{b^{\frac{2}{3}}})÷(-\frac{1}{4}{a^{-\frac{1}{4}}}{b^{-\frac{2}{3}}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知平面向量$\overrightarrow a,\overrightarrow b$,$\overrightarrow a=({-1,1}),\overrightarrow b=({2,k})$,若$\overrightarrow a∥\overrightarrow b$,则实数k=(  )
A.2B.-2C.4D.-4

查看答案和解析>>

同步练习册答案