精英家教网 > 高中数学 > 题目详情
函数f(x)=-
3x+1
 (x≥-
1
3
)
的反函数(  )
分析:先令y=-
3x+1
(x≥-
1
3
)
,用y表示出x,再交换x,y的位置,即得所求的反函数,从而得出反函数的单调性质即可得出正确选项.
解答:解:由题意令y=f(x)=-
3x+1
(x≥-
1
3
)
,可得x=
1
3
(-1+y2),则有y=
1
3
(x2-1),
f(x)=-
3x+1
(x≥-
1
3
)
的值域为(-∞,0],故反函数的定义域是(-∞,0],
y=
1
3
(x2-1)在(-∞,0]上单调递减.
故选D.
点评:本题考查反函数,解题关键是掌握住反函数的定义,由定义求出反函数的解析式,本题有一易漏点,即忘记求出函数的定义域,对于求函数的解析式的题,一般要求出函数的定义域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数F(x)=
3x-2
2x-1
,(x≠
1
2
)

(I)求F(
1
2013
)+F(
2
2013
)+F(
3
2013
)+…+F(
2012
2013
)

(II)已知数列满足a1=2,an+1=F(an),求数列{an}的通项公式;
(Ⅲ) 求证:a1a2a3…an
2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=3x+log
1
2
(-x)
的零点所在区间为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3x-13x+1

(1)证明f(x)为奇函数;
(2)判断f(x)的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)的定义域为D,若存在x0∈D,使f(x0)=x0成立,则称以(x0,y0)为坐标的点是函数f(x)的图象上的“稳定点”.
(1)若函数f(x)=
3x-1x+a
的图象上有且只有两个相异的“稳定点”,试求实数a的取值范围;
(2)已知定义在实数集R上的奇函数f(x)存在有限个“稳定点”,求证:f(x)必有奇数个“稳定点”.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3x,x∈(-∞,1]
log81x,x∈(1,+∞).
f(f(
1
4
))
的值为
1
16
1
16

查看答案和解析>>

同步练习册答案