精英家教网 > 高中数学 > 题目详情
已知f(x)=
x+1
x-1
(x≠±1)
,则下列各式成立的是(  )
A.f(x)+f(-x)=0B.f(x)•f(-x)=-1C.f(x)+f(-x)=1D.f(x)•f(-x)=1
f(x)=
x+1
x-1
,∴f(-x)=
-x+1
-x-1
=
x-1
x+1

因此f(x)•f(-x)=
x+1
x-1
x-1
x+1
=1
故选:D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

函数y=x+
2x-1
(  )
A.有最小值
1
2
,无最大值
B.有最大值
1
2
,无最小值
C.有最小值
1
2
,最大值2
D.无最大值,也无最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在R上的偶函数f(x)满足:f(0)=5,x>0时,f(x)=x+
4
x

(1)求x<0时,f(x)的解析式;
(2)求证:函数f(x)在区间(0,2)上递减,(2,+∞)上递增;
(3)当x∈[-1,t]时,函数f(x)的取值范围是[5,+∞),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=
(a-1)x-1,x≤1
logax,x>1
,若f(x)在(-∞,+∞)上单调递增,则实数a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
f(x+1),(-2<x<0)
2x+1,(0≤x<2)
x2-1,(x≥2)

(1)若f(a)=4,且a>0,求实数a的值.
(2)求f(-
3
2
)
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,且对任意a、b∈[-1,1],当a+b≠0时,都有
f(a)+f(b)
a+b
>0.
(1)若a>b,比较f(a)与f(b)的大小;
(2)解不等式f(x-
1
2
)<f(x-
1
4
);
(3)记P={x|y=f(x-c)},Q={x|y=f(x-c2)},且P∩Q=∅,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=|1-
1
x
丨(x>0)
(1)当0<a<b且f(a)=f(b)时,①求
1
a
+
1
b
的值;②求
1
a2
+
1
b2
的取值范围;
(2)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,与函数f(x)=2x-1-
1
2x+1
的奇偶性、单调性均相同的是(  )
A.y=exB.y=ln(x+
x2+1
)
C.y=x2D.y=tanx

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)=
2(x>0)
0(x=0)
-2(x<0)
,g(x)=
1(x为有理数)
0(x为无理数)
,则f[g(π)]的值为(  )
A.0B.2C.x=πD.-2

查看答案和解析>>

同步练习册答案