精英家教网 > 高中数学 > 题目详情
1.求函数y=lg($\frac{\sqrt{2}}{2}$+cosx)的定义域.

分析 根据函数成立的条件即可求函数的定义域.

解答 解:要使函数有意义,则$\frac{\sqrt{2}}{2}$+cosx>0,
即cosx>-$\frac{\sqrt{2}}{2}$,
即2kπ-$\frac{3π}{4}$<x<2kπ+$\frac{3π}{4}$,k∈Z,
即函数的定义域为(2kπ-$\frac{3π}{4}$,2kπ+$\frac{3π}{4}$),k∈Z.

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.复数z=$\frac{2}{1+i}$(其中i为虚数单位)的实部为(  )
A.-1B.1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知命题p:f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+(a+3)x-1有两个不同的极值点;q:|x-a|<1;若非p是非q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,且满足2Sn=3an-4n+3.
(1)用an表示an+1
(2)设bn=an+2,证明{bn}成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知tan(α+$\frac{π}{4}$)=2,α∈(0,$\frac{π}{2}$).
(1)求tanα的值;
(2)求sin(α-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某物流公司,要将295t物资运往某地,现有A,B两种型号的车可供调用,已知A型车每辆可装20t,B型车每辆可装15t,在每辆车不超载的条件下,若调用5辆A型车和x辆B型车可把295t物资装运完,写出x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设x为实数,[x]表示不超过x的最大整数,则函数f(x)=x+[x]在R上为非奇非偶(奇偶性).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.将两枚质地均匀的骰子各掷一次,设事件A={两个点数都不同},B={出现一个3点},则P(B|A)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解方程组:$\left\{\begin{array}{l}{\frac{25}{{a}^{2}}-\frac{4}{{b}^{2}}=1}\\{{a}^{2}+{b}^{2}=6}\end{array}\right.$.

查看答案和解析>>

同步练习册答案