精英家教网 > 高中数学 > 题目详情
6.设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,其中m≥2,则nSn的最小值为(  )
A.-3B.-5C.-6D.-9

分析 由等差数列性质求出a1=-2,d=1,由此利用导数性质能求出nSn的最小值.

解答 解:由Sm-1=-2,Sm=0,Sm+1=3,得am=2,am+1=3,所以d=1,因为Sm=0,故ma1+$\frac{m(m-1)}{2}$d=0,故a1=-$\frac{(m-1)}{2}$,
因为am+am+1=5,
故am+am+1=2a1+(2m-1)d=-(m-1)+2m-1=5,解得m=5.
所以${a}_{1}=-\frac{5-1}{2}$=-2,
nSn=n(-2n+$\frac{n(n-1)}{2}×1$)=$\frac{1}{2}$n3-$\frac{5}{2}$n2
设f(n)=$\frac{1}{2}$n3-$\frac{5}{2}$n2,则${f}^{'}(n)=\frac{3}{2}{n}^{2}-5n$,由f′(n)=0,得n=$\frac{10}{3}$或n=0,
由n∈N*,得当n=3时,nSn取最小值$\frac{1}{2}×27-\frac{5}{2}×9$=-9.
故选:D.

点评 本题考查等差数列的项数n与前n项积的最小值的求法,是中档题,解题时要认真审题,注意等差数列、导数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知直线l:x-y+4=0与圆C:$\left\{\begin{array}{l}{y=1+2sinθ}\\{x=1+2cosθ}\end{array}\right.$,则C上各点到l的距离的最小值为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.$2\sqrt{2}-2$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知左、右焦点分别为F1(-c,0),F2(c,0)的椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$过点$({\sqrt{3},\frac{{\sqrt{3}}}{2}})$,且椭圆C关于直线x=c对称的图形过坐标原点.
(I)求椭圆C的离心率和标准方程.
(II)圆${P_1}:{({x+\frac{{4\sqrt{3}}}{7}})^2}+{({y-\frac{{3\sqrt{3}}}{7}})^2}={r^2}({r>0})$与椭圆C交于A,B两点,R为线段AB上任一点,直线F1R交椭圆C于P,Q两点,若AB为圆P1的直径,且直线F1R的斜率大于1,求|PF1||QF1|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果圆(x-a)2+(y-a)2=8上存在一点P到直线y=-x的最短距离为$\sqrt{2}$,则实数a的值为(  )
A.-3B.3C.$3\sqrt{2}$D.-3或3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.底面为菱形的直棱柱ABCD-A1B1C1D1中,E、F分别为棱A1B1、A1D1的中点,
(1)在图中作一个平面α,使得BD?α,且平面AEF∥α(不必给出证明过程,只要求做出α与直棱柱ABCD-A1B1C1D1的截面)
(2)若AB=AA1=2,∠BAD=60°,求点C到所作截面α的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,|F1F2|=6,P是E右支上一点,PF1与y轴交于点A,△PAF2的内切圆在边AF2上的切点为Q,若|AQ|=$\sqrt{3}$,则E的离心率是(  )
A.2$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在检测一批相同规格共500kg航空耐热垫片的品质时,随机抽取了280片,检测到有5片非优质品,则这批垫片中非优质品约为(  )
A.2.8kgB.8.9kgC.10kgD.28kg

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知三棱锥O-ABC底面ABC的顶点在半径为$\sqrt{2}$的球O表面上,且AB=$\sqrt{2}$,AC=$\sqrt{2}$,BC=2,则三棱锥O-ABC的体积为(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过点(1,0)且与直线x-$\sqrt{2}$y+3=0平行的直线l被圆(x-6)2+(y-$\sqrt{2}$)2=7所截得的弦长为4.

查看答案和解析>>

同步练习册答案