【题目】已知椭圆
的焦点为
和
,过
的直线交
于
,
两点,过
作与
轴垂直的直线交直线
于点
.设
,已知当
时,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)求证:无论
如何变化,直线
过定点.
科目:高中数学 来源: 题型:
【题目】已知椭圆
过点
,且其离心率为
,过坐标原点
作两条互相垂直的射线与椭圆
分别相交于
,
两点.
(1)求椭圆
的方程;
(2)是否存在圆心在原点的定圆与直线
总相切?若存在,求定圆的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱中
,它的体积是
底面△ABC中,∠BAC=90°,AB=4,AC=3,
在底面的射影是D,且D为BC的中点.
![]()
(1)求侧棱
与底面ABC所成角的大小;
(2)求异面直线
与
所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】手机运动计步已成为一种时尚,某中学统计了该校教职工一天行走步数(单位:百步),绘制出如下频率分布直方图:
![]()
(Ⅰ)求直方图中
的值,并由频率分布直方图估计该校教职工一天步行数的中位数;
(Ⅱ)若该校有教职工175人,试估计一天行走步数不大于130百步的人数;
(Ⅲ)在(Ⅱ)的条件下该校从行走步数大于150百步的3组教职工中用分层抽样的方法选取6人参加远足活动,再从6人中选取2人担任领队,求这两人均来自区间
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,
,
是
轴上关于原点
对称的两定点,点
满足
,点
的轨迹为曲线
.
(1)求
的方程;
(2)过
的直线与
交于点
,线段
的中点为
,
的中垂线分别与
轴、
轴交于点
,问
是否成立?若成立,求出直线
的方程;若不成立,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,数列
中的每一项均在集合
中,且任意两项不相等,又对于任意的整数
,均有
.例如
时,数列
为
或
.
(1)当
时,试求满足条件的数列
的个数;
(2)当
,求所有满足条件的数列
的个数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com