| A. | 3 | B. | 2 | C. | $\frac{5}{3}$ | D. | $\frac{3}{2}$ |
分析 求出抛物线焦点为F(1,0),准线为l:x=-1.设A(x1,y1)、B(x2,y2),直线AB的方程为y=k(x-1),由AB方程与抛物线方程消去y得关于x的一元二次方程,利用根与系数的关系算出N的坐标,根据|NF|=$\frac{3}{2}$,利用两点间的距离公式解出k2=2,从而算出x1+x2=4,进而得到答案.
解答
解:∵抛物线方程为y2=4x,
∴抛物线的焦点为F(1,0),准线为l:x=-1,
设A(x1,y1),B(x2,y2),直线AB的方程为y=k(x-1),
代入抛物线方程消去y,得k2x2-(2k2+4)x+k2=0,
∴x1+x2=$\frac{2{k}^{2}+4}{{k}^{2}}$,x1x2=1,
∵过AB的中点M作准线的垂线与抛物线交于点N,
∴设N的坐标为(x0,y0),可得y0=$\frac{1}{2}$(y1+y2),
∵y1=k(x1-1),y2=k(x2-1),
∴y1+y2=k(x1+x2)-2k=k•$\frac{2{k}^{2}+4}{{k}^{2}}$-2k=$\frac{4}{k}$,
得到y0=$\frac{2}{k}$,所以x0=$\frac{1}{{k}^{2}}$,可得N($\frac{1}{{k}^{2}}$,$\frac{2}{k}$),
∵|NF|=$\frac{3}{2}$,
∴$\sqrt{(1-\frac{1}{{k}^{2}})^{2}+\frac{4}{{k}^{2}}}$=$\frac{3}{2}$,解之得k2=2,
因此x1+x2=$\frac{2{k}^{2}+4}{{k}^{2}}$=4,
∴M点的横坐标为$\frac{1}{2}$(x1+x2)=2,
故选:B.
点评 本题主要考查了抛物线的性质.利用抛物线上的点到焦点的距离与到准线的距离相等,把线段长度的转化为点的横坐标的问题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | -2 | C. | 0 | D. | $\frac{3}{2}$或-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com