精英家教网 > 高中数学 > 题目详情
13.已知f(α)=$\frac{sin(π-α)•cos(2π-α)}{cos(-π-α)•tan(π-α)}$,则f(-$\frac{31π}{3}$)的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

分析 利用诱导公式,同角三角函数基本关系式化简已知可得f(α)=cosα,根据诱导公式即可计算得解.

解答 解:∵f(α)=$\frac{sin(π-α)•cos(2π-α)}{cos(-π-α)•tan(π-α)}$
=$\frac{sinα•cosα}{(-cosα)(-tanα)}$
=cosα,
∴f(-$\frac{31π}{3}$)=cos(-$\frac{31π}{3}$)=cos(10$π+\frac{1}{3}π$)=cos$\frac{π}{3}$=$\frac{1}{2}$.
故选:A.

点评 本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,则输出的k值为(  )
A.7B.9C.11D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正项等比数列{an}的首项a1=1,a2•a4=16,则a8=(  )
A.32B.64C.128D.256

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个四面体的顶点在点间直角坐系O-xyz中的坐标分别是(1,0,0),(0,1,0),(0,0,1),(1,1,1),画该四面体三视图中的正视图时,以xOz平面为投影面,则得到的正视图可为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数y=4sin(2x+$\frac{3π}{5}$)图象向右平移$\frac{π}{5}$个单位长度,得到的函数图象的一条对称轴方程是(  )
A.x=$\frac{3π}{5}$B.x=$\frac{3π}{10}$C.x=$\frac{3π}{20}$D.x=$\frac{7π}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)=$\left\{{\begin{array}{l}{sinx,x∈[0,1]}\\{{x^2},x∈[1,2]}\end{array}}$,则$\int_0^2$f(x)dx等于(  )
A.$\frac{7}{3}$-cos1B.$\frac{10}{3}$-cos1C.$\frac{7}{3}$+cos1D.$\frac{10}{3}$+cos1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设抛物线y2=4x的焦点为F,A、B两点在抛物线上,且A、B、F三点共线,过AB的中点M作y轴的垂线与抛物线在第一象限内交于点N,若|NF|=$\frac{3}{2}$,则M点的横坐标为(  )
A.3B.2C.$\frac{5}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.正四棱锥P-ABCD中,底面ABCD是边长为2的正方形,若直线PC与平面PDB所成角的为30°,则正四棱锥P-ABCD的外接球的表面积为$\frac{32}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.三棱锥A-BCD中,AB=$\sqrt{6}$,其余各棱长都为2,则该三棱锥外接球的表面积为$\frac{20}{3}$π.

查看答案和解析>>

同步练习册答案