精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=ax2+bx+c的图象关于y轴对称,则f(x)=kx+b的图象关于原点对称.

分析 根据偶函数关于y轴对称,奇函数关于原点对称判断即可.

解答 解:f(x)=ax2+bx+c的图象关于y轴对称,
∴函数为偶函数,
∴b=0,
∴f(x)=kx+b=kx,为奇函数,
∴图象关于原点对称.
故答案为:原点.

点评 考查了函数的奇偶性,属于基础题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{10})^{x},x≤10}\\{-lg(x+2),x>10}\end{array}\right.$,若f(8-m2)<f(2m),则实数m的取值范围是(-4,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2x,x∈(0,2)的值域为A,函数g(x)=log2(x-2a)+$\sqrt{a+1-x}$(a<1)的定义域为B.
(Ⅰ)求集合A,B;
(Ⅱ)若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题p:?x∈R,x2-x-2≥0,那么命题?p为(  )
A.?x∈R,x2-x-2≤0B.?x∈R,x2-x-2<0C.?x∈R,x2-x-2≤0D.?x∈R,x2-x-2<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={1,2},B={2,3,4},那么集合A∩B等于(  )
A.{2}B.{2,3}C.{1,2,3}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数$f(x)={sin^2}ωx+\sqrt{3}sinωx•sin(\frac{π}{2}+ωx)$,(ω>0)的最小正周期是π,则ω=1,f(x)在$[\frac{π}{4},\;\frac{π}{2}]$上的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,在等腰直角三角形ABC中,AB=AC=$\sqrt{2}$,D,E是线段BC上的点,且DE=$\frac{1}{3}$BC,则$\overrightarrow{AD}$•$\overrightarrow{AE}$的取值范围是(  )
A.$[{\frac{8}{9},\;\frac{4}{3}}]$B.$[{\frac{4}{3},\;\frac{8}{3}}]$C.$[{\frac{8}{9},\;\frac{8}{3}}]$D.$[{\frac{4}{3},\;+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个几何体的三视图如图所示,其中正视图和俯视图的都是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设a,b为不相等的正实数,若二次函数f(x)=x2+(6-ab)x+10满足f(2a)=f(b),则ab的最小值为18.

查看答案和解析>>

同步练习册答案