精英家教网 > 高中数学 > 题目详情
5.一个几何体的三视图如图所示,其中正视图和俯视图的都是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

分析 根据三视图知几何体为一直四棱锥,结合图中数据求出该四棱锥的体积.

解答 解:由三视图知几何体为一直四棱锥,其直观图如图所示;

∵正视图和侧视图是腰长为1的两个全等的等腰直角三角形,
∴四棱锥的底面是正方形,且边长为1,其中一条侧棱垂直于底面且侧棱长也为1,
∴该四棱锥的体积为$\frac{1}{3}$×12×1=$\frac{1}{3}$.
故选:B.

点评 本题考查了由三视图求几何体体积的应用问题,解题的关键是判断几何体的形状,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=x+ax2+blnx,曲线y=f(x)过点P(1,0),且在P点处的切线斜率为2.
(1)求a,b的值;
(2)设函数g(x)=f(x)-2x+2,证明:g(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=ax2+bx+c的图象关于y轴对称,则f(x)=kx+b的图象关于原点对称.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“?x∈R,x2-5x+1>0”的否定为(  )
A.?x∈R,x2-5x+1≤0B.?x∈R,x2-5x+1≤0C.?x∈R,x2-5x+1<0D.?x∈R,x2-5x+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=(x+1)ex和函数g(x)=(ex-a)(x-1)2(a>0)(e为自然对数的底数).
(1)求函数f(x)的单调区间;
(2)判断函数g(x)的极值点的个数,并说明理由;
(3)若函数g(x)存在极值为2a2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.
(1)求证:平面AA1C⊥平面BA1C;
(2)若AC=BC,求几何体A1-ABC的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示为f(x)=Asin($\frac{π}{6}$x+φ)(A>0,0<φ<$\frac{π}{2}$)的部分图象,P,Q分别为f(x)图象的最高点和最低点,点P坐标为(2,A),PR⊥x轴于R,若∠PRQ=$\frac{2π}{3}$.则A及φ的值分别是(  )
A.$\sqrt{3}$,$\frac{π}{6}$B.$\sqrt{3}$,$\frac{π}{3}$C.2$\sqrt{3}$,$\frac{π}{6}$D.2$\sqrt{3}$,$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一半径为4m的水轮,如图所示水轮圆心O距离水面2m,己知水轮每分钟转动4圈,如果当水轮上P点从水中浮现时(图中P0)点开始计算时间.
(1)求P点相对于水面的高度h(m)与时间t(s)之间的函数关系式:
(2)P点第一次达到最高点约要多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,已知△AOB中,A(0,5),O(0,0),B(4,3),$\overrightarrow{OC}$=$\frac{1}{4}$$\overrightarrow{OA}$,$\overrightarrow{OD}$=$\frac{1}{2}$$\overrightarrow{OB}$,AD与BC相交于点M,求点M的坐标.

查看答案和解析>>

同步练习册答案