分析 作出不等式组对应的平面区域,利用目标函数的几何意义,分别求出最大值和最小值即可.
解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,![]()
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.由$\left\{\begin{array}{l}{x=2}\\{y=x}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即A(2,2),
代入目标函数z=2x+y得z=2×2+2=4+2=6.
即目标函数z=2x+y的最大值为6.
当直线y=-2x+z经过点B时,直线y=-2x+z的截距最小,
此时z最小.由$\left\{\begin{array}{l}{y=x}\\{x+y=2}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即B(1,1),
代入目标函数z=2x+y得z=2×1+1=3.
即目标函数z=2x+y的最小值为3.
则最大值和最小值之和为6+3=9,
故答案为:5.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:选择题
| A. | ${a_n}=-{2^{n-1}}$ | B. | ${a_n}={2^{n-1}}$ | C. | an=2n-3 | D. | ${a_n}={2^{n-1}}-2$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | -cos40° | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com