精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=x-1+aex
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)求f(x)的极值;
(3)当a=1时,曲线y=f(x)与直线y=kx-1没有公共点,求k的取值范围.

分析 (1)求导,由题意可知f′(1)=0,即可求得a的值;
(2)由(1)可知:分类讨论,根据导数与函数的单调性及极值的关系,即可求得f(x)的极值;
(3)由题意可知g(x)=(1-k)x+ex=0无实数解,求导,根据函数的单调性及函数零点的判断,即可求得k的取值范围.

解答 解:(1)f(x)=x-1+aex.求导,f′(x)=1+aex
由f′(1)=0,1+ae=0,解得:a=-$\frac{1}{e}$,
∴a的值-$\frac{1}{e}$;
(2)当a≥0,f′(x)>0恒成立,则f(x)在R上是增函数,无极值;
当a<0时,令f′(x)=0,则ex=-$\frac{1}{a}$,x=ln(-$\frac{1}{a}$),
x<ln(-$\frac{1}{a}$),f′(x)>0;当x>ln(-$\frac{1}{a}$),f′(x)<0,
∴f(x)在(-∞,ln(-$\frac{1}{a}$))上单调递增,在(ln(-$\frac{1}{a}$),+∞)单调递减,
f(x)在x=ln(-$\frac{1}{a}$)处取极大值,且极大值f(ln(-$\frac{1}{a}$))=-ln(-a)-2,无极小值;
(3)当a=1时,f(x)=x-1+ex
令g(x)=f(x)-(kx-1)=(1-k)x+ex
由题意可知:g(x)=0无实数解,
假设k<1,此时g(0)=1>0,g($\frac{1}{k-1}$)=-1+${e}^{\frac{1}{k-1}}$<0,
由函数g(x)的图象连续不断,由函数零点存在定理g(x)=0在R上至少有一解,
与方程g(x)=0,在R上没有实数解矛盾,故k≥1,
由k=1时,g(x)=ex,可知方程g(x)=0在R上没有实数解,
∴k的取值范围[1,+∞).

点评 本题考查导数的综合应用,考查利用导数求函数的单调性及极值,函数零点的判定,考查分类讨论思想及转化思想的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M为线段BF上一点,且DM⊥平面ACE.
(1)求BM的长;
(2)求二面角A-DM-B的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|y=ln(2-x)},N={x|x2-3x-4≤0},则M∩N=(  )
A.[-1,2)B.[-1,2]C.[-4,1]D.[-1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=2sin(ωx+φ)-1(ω>0,|φ|<π)的一个零点是$\frac{π}{3}$,函数y=f(x)图象的一条对称轴是x=-$\frac{π}{6}$,则ω取得最小值时,函数f(x)的单调区间是(  )
A.[3kπ-$\frac{π}{3}$,3kπ-$\frac{π}{6}$],k∈ZB.[3kπ-$\frac{5π}{3}$,3kπ-$\frac{π}{6}$],k∈Z
C.[2kπ-$\frac{2π}{3}$,2kπ-$\frac{π}{6}$],k∈ZD.[2kπ-$\frac{π}{3}$,2kπ-$\frac{π}{6}$],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知F(1,0),直线l:x=-1,P为平面上的动点,过点P作l的垂线,垂足为点Q,且$\overrightarrow{QP}$•$\overrightarrow{QF}$=$\overrightarrow{FP}$•$\overrightarrow{FQ}$.
(1)求动点P的轨迹G的方程;
(2)点F关于原点的对称点为M,过F的直线与G交于A、B两点,且AB不垂直于x轴,直线AM交曲线G于C,直线BM交曲线C于D.
①证明直线AB与曲线CD的倾斜角互补;
②直线CD是否经过定点?若经过定点,求出这个定点,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题p:若a,b是实数,则a>b是a2>b2的充分不必要条件;命题q:“?x∈R,x2+2>3x”的否定是“?x∈R,x2+2<3x”,则下列命题为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:t=$\frac{π}{2}$,命题q:${∫}_{0}^{t}$sinxdx=1,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.△ABC的内角A,B,C所对的边分别是a,b,c,若a=2,b=3,∠C=2∠A.
(I)求c的值;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右顶点分别为A1、A2,M是双曲线上异于A1、A2的任意一点,直线MA1和MA2分别与y轴交于P,Q两点,O为坐标原点,若|OP|,|OM|,|OQ|依次成等比数列,则双曲线的离心率的取值范围是(  )
A.$({\sqrt{2},+∞})$B.$[{\sqrt{2},+∞})$C.$({1,\sqrt{2}})$D.$({1,\sqrt{2}}]$

查看答案和解析>>

同步练习册答案