精英家教网 > 高中数学 > 题目详情

如图所示,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点.

(1)证明:PB∥平面ACM;

(2)证明:AD⊥平面PAC.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年湖南衡阳八中高二上第二次月考理科数学卷(解析版) 题型:选择题

设两不同直线的方向向量分别是,平面的法向量是,则下列推理

;②;③;④

其中正确的命题序号是( )

A.①②③ B.②③④ C.①③④ D.①②④

查看答案和解析>>

科目:高中数学 来源:2016届甘肃省高三12月月考理科数学试卷(解析版) 题型:解答题

已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,

直线与以椭圆C的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设P为椭圆C上一点,若过点的直线与椭圆C相交于不同的两点S和T,满足(O为坐标原点),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2015-2015学年云南省玉溪市高二上学期期中数学试卷(解析版) 题型:解答题

已知数列的各项均为正数,观察程序框图,若时,有

(1)求数列的通项;

(2)令,求的值.

查看答案和解析>>

科目:高中数学 来源:2015-2015学年云南省玉溪市高一上学期期中数学试卷(解析版) 题型:填空题

已知函数是定义在上的奇函数,当时,,则时,=________.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年山东省济宁市兖州区高一上学期期中考试数学试卷(解析版) 题型:解答题

已知函数

(Ⅰ)求证:不论a为何实数f(x)在(﹣∞,+∞)上为增函数;

(Ⅱ)若f(x)为奇函数,求a的值;

(Ⅲ)在(Ⅱ)的条件下,求f(x)在区间[1,5)上的最小值.

查看答案和解析>>

科目:高中数学 来源:2016届河北省高三上学期期中数学试卷(解析版) 题型:填空题

已知正方形的边长为2,的中点,则__________

查看答案和解析>>

科目:高中数学 来源:2016届辽宁省抚顺市高三12月月考理科数学试卷(解析版) 题型:选择题

定义在上的单调函数,则方程的解所在的区间是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年安徽省合肥市高一上学期期中数学试卷(解析版) 题型:选择题

的值是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案