精英家教网 > 高中数学 > 题目详情
4.在△ABC中,角A,B,C的对边边长分别为a,b,c且满足csinA=acosC,则$\sqrt{3}$sinA-cos(${B+\frac{π}{4}}$)的取值范围为(1,2].

分析 由题意和正弦定理可得B=$\frac{3π}{4}$-A,0<A<$\frac{3π}{4}$,进而由三角函数公式可得$\sqrt{3}$sinA-cos(B+$\frac{π}{4}$)=2sin(A+$\frac{π}{6}$),利用正弦函数的性质即可得解.

解答 解:∵在△ABC中,角A,B,C的对边边长分别为a,b,c且满足csinA=acosC,
∴由正弦定理可得sinCsinA=sinAcosC,
∵sinA≠0,
∴sinC=cosC,
∴C=$\frac{π}{4}$,
∴B=$\frac{3π}{4}$-A,0<A<$\frac{3π}{4}$,
∴$\sqrt{3}$sinA-cos(B+$\frac{π}{4}$)=$\sqrt{3}$sinA-cos($\frac{3π}{4}$-A+$\frac{π}{4}$)
=$\sqrt{3}$sinA+cosA=2sin(A+$\frac{π}{6}$),
∵$\frac{π}{6}$<A+$\frac{π}{6}$<$\frac{11π}{12}$,可得:$\frac{1}{2}$<sin(A+$\frac{π}{6}$)≤1,
∴$\sqrt{3}$sinA-cos(${B+\frac{π}{4}}$)=2sin(A+$\frac{π}{6}$)∈(1,2].
故答案为:(1,2].

点评 本题考查三角函数的最值,涉及正弦定理和三角函数公式的应用,考查了转化思想和数形结合思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex+ax,g(x)=x•ex+a
(1)若对于任意的实数x,都有f(x)≥1,求实数a的取值范围;
(2)令F(x)=[g(x)-f(x)],且实数a≠0,若函数F(x)存在两个极值点x1,x2,证明:0<e2F(x1)<4且0<e2F(x2)<4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=log2(1-x)-log2(1+x).
(1)求函数f(x)的定义域并判断f(x)的奇偶性;
(2)判断f(x)在定义域上的单调性,并证明;
(3)方程f(x)=x+1是否有根?如果有根x0,请求出一个长度为$\frac{1}{4}$的区间(a,b),使x0∈(a,b);如果没有,请说明理由?(注:区间(a,b)的长度=b-a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.$f(x)=\frac{1}{2}{x^2}-ax+alnx$有两个极值点,则a的范围是(  )
A.a<0B.a>4C.a>4或 a<0D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数g(x)=(a+1)x-2+1(a>0)的图象恒过定点A,且点A又在函数$f(x)={log_{\sqrt{3}}}$(x+a)的图象上.
(1)求实数a的值;
(2)当方程|g(x+2)-2|=2b有两个不等实根时,求b的取值范围;
(3)设an=g(n+2),bn=$\frac{{{a_n}-1}}{{{a_n}•{a_{n+1}}}},n∈{N^*}$,求证:b1+b2+b3+…+bn<$\frac{1}{3}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=4cos(ωx-$\frac{π}{6}$)sinωx-cos(2ωx+π),其中ω>0.
(1)当ω=1时,求函数y=f(x)的值域;
(2)若f(x)在区间[-$\frac{3π}{2}$,$\frac{π}{2}$]上为增函数,求ω的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知,焦点在x轴上的椭圆的上下顶点分别为B2、B1,经过点B2的直线l与以椭圆的中心为顶点、以B2为焦点的抛物线交于A、B两点,直线l与椭圆交于B2、C两点,且|$\overrightarrow{A{B_2}}$|=2|$\overrightarrow{B{B_2}}$|.直线l1过点B1且垂直于y轴,线段AB的中点M到直线l1的距离为$\frac{9}{4}$.设$\overrightarrow{CB}$=λ$\overrightarrow{B{B_2}}$,则实数λ的取值范围是(  )
A.(0,3)B.(-$\frac{1}{2}$,2)C.(-$\frac{2}{3}$,4)D.(-$\frac{5}{9}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点. 将△ADM沿AM折起,使得平面ADM⊥平面ABCM.

(Ⅰ)求证:AD⊥BM;
(Ⅱ)若$\overrightarrow{DE}$=$\frac{2}{3}$$\overrightarrow{DB}$时,求三棱锥D-AEM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,若a=$\sqrt{3}$,b=$\sqrt{2}$,b=45°,则∠A的为(  )
A.30°或120°B.60°或120°C.30°D.60°

查看答案和解析>>

同步练习册答案