精英家教网 > 高中数学 > 题目详情
9.设f(x)=4cos(ωx-$\frac{π}{6}$)sinωx-cos(2ωx+π),其中ω>0.
(1)当ω=1时,求函数y=f(x)的值域;
(2)若f(x)在区间[-$\frac{3π}{2}$,$\frac{π}{2}$]上为增函数,求ω的最大值.

分析 (1)先利用两角和余差的基本公式以及诱导公式等将函数化为y=Asin(ωx+φ)的形式,结合三角函数的图象和性质,求出f(x)的取值最大和最小值,即得到f(x)的值域.
(2)结合三角函数的图象和性质,求增区间的范围.f(x)在区间[-$\frac{3π}{2}$,$\frac{π}{2}$]上为增函数,可得ω的最大值.

解答 解:(1)f(x)=4cos(ωx-$\frac{π}{6}$)sinωx-cos(2ωx+π),其中ω>0.
化简可得::f(x)=4sinωx[cosωx×$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$sinωx]+cos2ωx=$\sqrt{3}$sin2ωx+2sin2ωx+cos2ωx=1+$\sqrt{3}$sin2ωx
当ω=1时,函数y=f(x)=1+$\sqrt{3}$sin2x
根据三角函数的图象和性质可得:f(x)的值域的值域为[1-$\sqrt{3}$,1+$\sqrt{3}$].
(2)由(1)可得f(x)=1+$\sqrt{3}$sin2ωx
∴2k$π-\frac{π}{2}$≤2ωx≤$2kπ+\frac{π}{2}$
解得:$\frac{kπ}{ω}-\frac{π}{4ω}$≤x≤$\frac{kπ}{ω}+\frac{π}{4ω}$,k∈Z
故得函数f(x)的增区间为:[$\frac{kπ}{ω}-\frac{π}{4ω}$,$\frac{kπ}{ω}+\frac{π}{4ω}$]k∈Z.
∵f(x)在区间[-$\frac{3π}{2}$,$\frac{π}{2}$]上为增函数,
故:$\frac{kπ}{ω}-\frac{π}{4ω}$≤$-\frac{3π}{2}$且$\frac{π}{2}$≤$\frac{kπ}{ω}+\frac{π}{4ω}$,k∈Z
解得:$ω≤\frac{1-4k}{6}$且$\frac{4k+1}{2}≥ω$,k∈Z
∵ω>0.
当k=0时,满足题意,此时ω=$\frac{1}{6}$.
故得ω的最大值为$\frac{1}{6}$.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知命题p:?x≥4,log2x≥2;命题q:在△ABC中,若A>$\frac{π}{3}$,则sinA>$\frac{{\sqrt{3}}}{2}$.则下列命题为真命题的是(  )
A.p∧qB.p∧(?q)C.(?p)∧(?q)D.(?p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.正四棱锥底面边长为a,侧棱长为a,则其表面积为$(\sqrt{3}+1){a}^{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\frac{x}{lnx}-ax$.
(1)a=1,x>1时,求证:$f(x)•\frac{x-1}{x}<\frac{3-x}{2}$;
(2)求证:$\sum_{k=1}^n{\frac{2}{2k+1}}≤\frac{2}{3}+ln\frac{n+1}{2}\;(n∈N,n≥2)$;
(3)若$?{x_1},{x_2}∈[{e,{e^2}}]$,使f(x1)-f′(x2)≤a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,角A,B,C的对边边长分别为a,b,c且满足csinA=acosC,则$\sqrt{3}$sinA-cos(${B+\frac{π}{4}}$)的取值范围为(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx-$\frac{a}{x}$.
(1)当a>0时,求f(x)在[e,+∞)上的最小值;
(2)若f(x)在[1,e]上的最小值为$\frac{3}{2}$,求实数a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=k(x+1)2-x,g(x)=2x-k•2-x(k∈R且k≠0)
(1)若f(1)=23,求函数g(x)在区间[0,1]上的值域;
(2)当-3<g(1)<3时,函数f(x)在区间[0,2]上的最小值大于h(x)=$\frac{2x}{{x}^{2}+1}$+$\frac{{x}^{2}+1}{x}$在(0,+∞]上的最小值,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a=0.33,b=30.3,c=0.23,则a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A、B、C所对的边分别为a,b,c,$\sqrt{3}$bcosA=asinB.
(1)求A;
(2)若a=$\sqrt{2}$,$\frac{c}{a}$=$\frac{sinA}{sinB}$,求△ABC的周长.

查看答案和解析>>

同步练习册答案