精英家教网 > 高中数学 > 题目详情
10.设函数f(x)=|-2x+4|-|x+6|.
(1)求不等式f(x)≥0的解集;
(2)若f(x)>a+|x-2|存在实数解,求实数a的取值范围.

分析 (1)通过讨论x的范围求出不等式的解集即可;
(2)问题等价于|x-2|-|x+6|>a,根据绝对值不等式的性质求出a的范围即可.

解答 解:(1)f(x)≥0即|2x-4|-|x+6|≥0,
可化为①$\left\{\begin{array}{l}{x<-6}\\{-(2x-4)+(x+6)≥0}\end{array}\right.$
或②$\left\{\begin{array}{l}{-6≤x≤2}\\{-(2x-4)-(x+6)≥0}\end{array}\right.$,
或③$\left\{\begin{array}{l}{x>2}\\{(2x-4)-(x+6)≥0}\end{array}\right.$,
解得x<-6或-6≤x≤-$\frac{2}{3}$或x≥10,
综上,不等式的解集是(-∞,-$\frac{2}{3}$]∪[10,+∞);
(2)f(x)>a+|x-2|等价于2|x-2|-|x+6|>a+|x-2|,
等价于|x-2|-|x+6|>a,
而|x-2|-|x+6|≤|x-2-x-6|=8,
若f(x)>a+|x-2|存在实数解,则a<8,
即实数a的范围是(-∞,8).

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,转化思想,考查绝对值的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知$f(x)=2sin({2x+\frac{π}{3}})$,则$f({\frac{2π}{3}})$=-$\sqrt{3}$;若f(x)=-2,则满足条件的x的集合为$\{x|x=kπ-\frac{5}{12}π\;,k∈Z\}$;将f(x)的图象向右平移$\frac{π}{6}$个单位再向下平移2个单位,得到函数g(x),则g(x)的解析式为g(x)=2sin2x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=|$\frac{2x}{{x}^{2}+1}$-a|+2a+$\frac{2}{3}$,x∈[0,24],其中a是与气象有关的参数,且a∈[0,1],若用每天f(x)的最大值为当天的综合放射性污染指数,并记作M(a).
(1)令t=$\frac{2x}{{x}^{2}+1}$,x∈[0,24],求t的取值范围;
(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x,y满足约束条件$\left\{\begin{array}{l}{2x+y-6≤0}\\{x-y-1≤0}\\{x-1≤0}\end{array}\right.$,若z=ax+2y仅在点$({\frac{7}{3},\frac{4}{3}})$处取得最大值,则a的值可以为(  )
A.-8B.-4C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若$\frac{cosA}{cosB}$=$\frac{b}{a}$,$\frac{cosB}{cosC}$=$\frac{c}{b}$,则△ABC是(  )
A.直角三角形B.等腰三角形,但不是正三角形
C.直角三角形或等腰三角形D.正三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x2($\frac{3}{2}$-x)的单调增区间为(  )
A.(-1,0)、(0,1)B.(-∞,0)、(1,+∞)C.(0,3)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知过定点P(2,0)的直线l与曲线y=$\sqrt{2-{x}^{2}}$相交于A,B两点,O为坐标原点,当S△AOB=1时,直线l的倾斜角为(  )
A.150°B.120°C.120°或60°D.150°或30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若实数m,n满足$\left\{\begin{array}{l}{-1≤2m+3n≤2}\\{-3<m-n≤1}\end{array}\right.$,则3m+4n的取值范围是[-2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.要得到函数y=sinx的图象,只需将函数$y=cos(2x-\frac{π}{4})$的图象上所有的点(  )
A.横坐标伸长到原来的2倍(纵坐标不变),再向左平移$\frac{π}{8}$个单位长度
B.横坐标伸长到原来的2倍(纵坐标不变),再向右平移$\frac{π}{4}$个单位长度
C.横坐标伸长到原来的$\frac{1}{2}$倍(纵坐标不变),再向右平移$\frac{π}{4}$个单位长度
D.横坐标伸长到原来的$\frac{1}{2}$倍(纵坐标不变),再向左平移$\frac{π}{8}$个单位长度

查看答案和解析>>

同步练习册答案