·ÖÎö £¨1£©Çó³öº¯ÊýµÄµ¼Êý£¬¼ÆËãf£¨1£©£¬f¡ä£¨1£©µÄÖµ£¬Çó³öÇÐÏß·½³Ì¼´¿É£»
£¨2£©·¨Ò»£º¸ù¾Ý$\frac{a}{x}$-2lnx¡Ü0£¬Éè¦Õ£¨x£©=$\frac{a}{x}$-2lnx£¬ÔòÎÊÌâµÈ¼ÛÓÚx¡Ê£¨0£¬2]ʱ£¬¦Õ£¨x£©max¡Ü0£¬Í¨¹ýÌÖÂÛaµÄ·¶Î§£¬Çó³öº¯ÊýµÄ×î´óÖµ£¬´Ó¶øÇó³öaµÄ·¶Î§¼´¿É£»
·¨¶þ£ºÓÉ$\frac{a}{x}$-2lnx¡Ü0µÃ£¬a¡Ü2xlnx£¬Áî¦Õ£¨x£©=2xlnx£¬£¨0£¼x¡Ü2£©£¬Ôòa¡Ü[¦Õ£¨x£©]min£¬¸ù¾Ýº¯ÊýµÄµ¥µ÷ÐÔÇó³öº¯ÊýµÄ×îСֵ£¬´Ó¶øÇó³öaµÄ·¶Î§¼´¿É£»
£¨3£©Çó³öº¯Êýf£¨x£©µÄµ¼Êý£¬Çó³öaµÄ·¶Î§£¬±íʾ³öÖ±ÏßMNµÄбÂÊ£¬½áºÏ»»ÔªË¼ÏëÒÔ¼°º¯ÊýµÄµ¥µ÷ÐÔÇó³öбÂÊkµÄ·¶Î§¼´¿É£®
½â´ð ½â£º£¨1£©a=0ʱ£¬f£¨x£©=x-2lnx£¬f¡ä£¨x£©=1-$\frac{2}{x}$£¬
¡àf£¨1£©=1£¬f¡ä£¨1£©=-1£¬
¡àÇó³öÖ±Ïß·½³ÌÊÇy-1=-£¨x-1£©£¬
¼´y=-x+2£»
£¨2£©ÓÉÌâÒâµÃ£º0£¼x¡Ü2ʱ£¬f£¨x£©¡Üx£¬¼´$\frac{a}{x}$-2lnx¡Ü0£¬
Éè¦Õ£¨x£©=$\frac{a}{x}$-2lnx£¬ÔòÎÊÌâµÈ¼ÛÓÚx¡Ê£¨0£¬2]ʱ£¬¦Õ£¨x£©max¡Ü0£¬
¦Õ¡ä£¨x£©=-$\frac{a+2x}{{x}^{2}}$£¬
£¨i£©µ±a¡Ý0ʱ£¬¦Õ¡ä£¨x£©£¼0£¬²»ºÏÌâÒ⣬
£¨ii£©µ±a£¼0ʱ£¬¢Ù-$\frac{a}{2}$¡Ê£¨0£¬2£©Ê±£¬¦Õ£¨x£©ÔÚ£¨0£¬-$\frac{a}{2}$£©ÉϵÝÔö£¬ÔÚ£¨-$\frac{a}{2}$£¬2£©Éϵݼõ£¬
¦Õ£¨x£©max=¦Õ£¨-$\frac{a}{2}$£©=-2-2ln£¨-$\frac{a}{2}$£©¡Ü0£¬´Ëʱ£¬a¡Ê£¨-4£¬-$\frac{2}{e}$]£»
¢Ú-$\frac{a}{2}$¡Ê[2£¬+¡Þ£©Ê±£¬¦Õ£¨x£©ÔÚ£¨0£¬2]µÝÔö£¬¦Õ£¨2£©=$\frac{a}{2}$-2ln2¡Ü0£¬
´Ëʱ£¬a¡Ê£¨-¡Þ£¬-4]£»
×ÛÉÏ£¬´æÔÚʵÊýa×é³ÉµÄ¼¯ºÏ{a|a¡Ü-$\frac{2}{e}$}£»
·½·¨¶þ£ºÓÉÌâÒâf£¨x£©¡Üx£¬¶Ôx¡Ê£¨0£¬2]ºã³ÉÁ¢£¬
¼´$\frac{a}{x}$-2lnx¡Ü0¶Ôx¡Ê£¨0£¬2]ºã³ÉÁ¢£¬
ÓÉ$\frac{a}{x}$-2lnx¡Ü0µÃ£¬a¡Ü2xlnx£¬
Áî¦Õ£¨x£©=2xlnx£¬£¨0£¼x¡Ü2£©£¬Ôòa¡Ü[¦Õ£¨x£©]min£¬
¦Õ¡ä£¨x£©=2£¨lnx+x•$\frac{1}{x}$£©=2£¨lnx+1£©£¬
µ±0£¼x£¼$\frac{1}{e}$ʱ£¬¦Õ¡ä£¨x£©£¼0£¬
µ±$\frac{1}{e}$£¼x£¼2ʱ£¬¦Õ¡ä£¨x£©£¾0£¬
¡à¦Õ£¨x£©ÔÚ£¨0£¬2]ÉϵÄ×îСֵÊǦգ¨$\frac{1}{e}$£©=-$\frac{2}{e}$£¬
¹Êa¡Ü-$\frac{2}{e}$ΪËùÇó£»
£¨3£©ÓÉf¡ä£¨x£©=$\frac{{x}^{2}-2x-a}{{x}^{2}}$=0£¨x£¾0£©£¬
µÃx2-2x-a=0£¬£¨x£¾0£©£¬
ÓÉÌâÒâµÃ£º$\left\{\begin{array}{l}{¡÷£¾0}\\{m+n=2£¾0}\\{mn=-a£¾0}\end{array}\right.$£¬½âµÃ£º-1£¼a£¼0£¬
kMN=$\frac{f£¨m£©-f£¨n£©}{m-n}$=$\frac{£¨m-n£©+£¨\frac{a}{m}-\frac{a}{n}£©-2£¨lnm-lnn£©}{m-n}$=2-$\frac{£¨\frac{m}{n}+1£©ln\frac{m}{n}}{\frac{m}{n}-1}$£¬
Éèt=$\frac{m}{n}$£¬£¨m£¾n£©£¬
ÔòkMN=2-$\frac{£¨t+1£©lnt}{t-1}$£¨t£¾1£©£¬
Éèg£¨t£©=$\frac{t+1}{t-1}$lnt£¬£¨t£¾1£©£¬
Ôòg¡ä£¨t£©=$\frac{t-\frac{1}{t}-2lnt}{{£¨t-1£©}^{2}}$£¬
Éèh£¨t£©=t-$\frac{1}{t}$-2lnt£¨t£¾1£©£¬
Ôòh¡ä£¨t£©=1+$\frac{1}{{t}^{2}}$-$\frac{2}{t}$=$\frac{{£¨t-1£©}^{2}}{{t}^{2}}$£¾0£¬
¡àh£¨t£©ÔÚ£¨1£¬+¡Þ£©µÝÔö£¬
¡àh£¨t£©£¾h£¨1£©=0¼´g£¨t£©£¾0£¬
¡àg£¨t£©ÔÚ£¨1£¬+¡Þ£©µÝÔö£¬
t¡ú+¡Þʱ£¬g£¨t£©¡ú+¡Þ£¬
ÉèQ£¨t£©=lnt-£¨1-$\frac{1}{t}$£©£¬£¨t£¾1£©£¬
ÔòQ¡ä£¨t£©=$\frac{t-1}{{t}^{2}}$£¾0£¬
¡àQ£¨t£©ÔÚ£¨1£¬+¡Þ£©µÝÔö£¬
¡àQ£¨t£©£¾Q£¨1£©=0£¬¼´lnt£¾1-$\frac{1}{t}$£¬
ͬÀí¿ÉÖ¤t-1£¾lnt£¬
¡àt+1£¾$\frac{£¨t+1£©lnt}{t-1}$£¾$\frac{t+1}{t}$£¬
µ±t¡ú1ʱ£¬t+1¡ú2£¬$\frac{t+1}{t}$¡ú2£¬
¡àt¡ú1ʱ£¬g£¨t£©¡ú2£¬
¡àÖ±ÏßMNµÄбÂʵÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬0£©£®
µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄÇÐÏß·½³ÌÎÊÌ⣬¿¼²éº¯ÊýµÄµ¥µ÷ÐÔ¡¢×îÖµÎÊÌ⣬¿¼²éµ¼ÊýµÄÓ¦ÓÃÒÔ¼°·ÖÀàÌÖÂÛ˼Ï롢ת»¯Ë¼Ïë¡¢»»ÔªË¼Ï룬ÊÇÒ»µÀ×ÛºÏÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Ë«ÇúÏßµÄÒ»Ö§ | B£® | ÍÖÔ² | ||
| C£® | Ë«ÇúÏßµÄÒ»Ö§»òÍÖÔ² | D£® | Ë«ÇúÏß»òÍÖÔ² |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com