精英家教网 > 高中数学 > 题目详情
11.一次测试中,为了了解学生的学习情况,从中抽取了n个学生的成绩进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在的数据).

(1)求样本容量n和频率分布直方图中x,y的值;
(2)求这n名同学成绩的平均数、中位数及众数;
(3)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取3名同学参加志愿者活动,求这3名同学中恰有两名同学得分在[90,100]内的概率.

分析 (1)利用频率分布直方图,结合频率=$\frac{频数}{总数}$,能求出样本容量n和频率分布直方图中x、y的值.
(2)由频率分布直方图能求出这n名同学成绩的平均数、中位数及众数.
(3)由题意,分数在[80,90)内的有4人,分数在[90,100]内的有2人,成绩是80分以上(含80分)的学生共6人.从成绩是80分以上(含80分)的同学中随机抽取3名同学参加志愿者活动,利用等可能事件概率计算公式能求出这3名同学中恰有两名同学得分在[90,100]内的概率.

解答 解:(1)由题意可知,样本容量n=$\frac{8}{0.02×10}$=40,
y=$\frac{2}{40}$÷10=0.005,
x=$\frac{1-(0.002+0.004+0.01+0.005)×10}{10}$=0.025.
(2)由频率分布直方图得:
这n名同学成绩的平均数:
$\overline{x}$=0.020×10×55+0.025×10×65+0.040×10×75+0.010×10×85+0.005×10×95=70.5,
∵成绩在[50,70)的频率为(0.020+0.025)×10=0.45,
成绩在[70,80)的频率为0.040×10=0.4,
∴中位数为:70+$\frac{0.5-0.45}{0.4}×10$=71.25,
众数为:$\frac{70+80}{2}$=75.
(3)由题意,分数在[80,90)内的有:0.01×10×40=4人,
分数在[90,100]内的有:0.005×10×40=2人,
∴成绩是80分以上(含80分)的学生共6人.
从成绩是80分以上(含80分)的同学中随机抽取3名同学参加志愿者活动,
基本事件总数N=${C}_{6}^{3}$=20,
这3名同学中恰有两名同学得分在[90,100]内包含的基本事件个数M=${C}_{2}^{2}{C}_{4}^{1}$=4,
∴这3名同学中恰有两名同学得分在[90,100]内的概率p=$\frac{M}{N}$=$\frac{4}{20}=\frac{1}{5}$.

点评 本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知数列已知数列{an}的前n项和是Sn,且Sn+$\frac{1}{3}$an=1(n∈N+).
(1)求数列{an}的通项公式;
(2)设bn=log4(1-Sn+1)(n∈N+),Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{{1}_{\;}}{{b}_{n}{b}_{n+1}}$,求Tn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知0<α<$\frac{π}{2}$,cos(2π-α)-sin(π-α)=-$\frac{\sqrt{5}}{5}$
(1)求sinα+cosα的值;
(2)求sin(2α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=x+\frac{a}{x}-2lnx$.
(1)当a=0时,求f(x)在点(1,f(1))处的切线方程;
(2)是否存在实数a,当0<x≤2时,函数f(x)图象上的点都在$\left\{\begin{array}{l}0<x≤2\\ x-y≥0\end{array}\right.$所表示的平面区域(含边界)?若存在,求出a的值组成的集合;否则说明理由;
(3)若f(x)有两个不同的极值点m,n(m>n),求过两点M(m,f(m)),N(n,f(n))的直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设m、n是两条不同的直线,α、β、γ是三个不同的平面,给出下列四个命题,其中正确命题的序号是(  )
①若m⊥α,n⊥α,则m⊥n;
②若α∥β,β∥γ,m⊥α,则m⊥γ;
③若m∥α,n∥α,则m∥n;
④若α⊥γ,β⊥γ,则α⊥β.
A.B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A、B两点,直线AF2与椭圆的另一个交点为C,若S△ABC=3S${\;}_{△BC{F}_{2}}$,则椭圆的离心率为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知命题p:不等式x2-ax-8>0对任意实数x∈[2,4]恒成立;命题q:存在实数θ满足$\frac{4}{a-1}≤sinθ-2$;命题r:不等式ax2+2x-1>0有解.
(1)若p∧q为真命题,求a的取值范围.
(2)若命题p、q、r恰有两个是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-2x+alnx(a∈R).
(Ⅰ)当a=2时,求函数f(x)在(1,f(1))处的切线方程;
(Ⅱ)当a>0时,若函数f(x)有两个极值点x1,x2(x1<x2),不等式f(x1)≥mx2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=f(x)的周期为2,当x∈[-1,1]时f(x)=x2,那么关于x的方程f(x)-|log5x|=0共有几个根(  )
A.4个B.5个C.6个D.8个

查看答案和解析>>

同步练习册答案